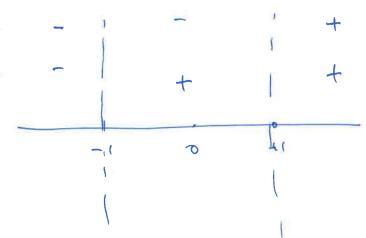
DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

NO CALCULATORS PERMITTED.

EXAM TIME IS 60 MINUTES.


THE EXAM CONSISTS OF 5 QUESTIONS.

Your SID:		
	Question 1	/ 20
	Question 2	/ 20
	Question 3	/ 20
	Question 4	/ 20
	Question 5	/ 20
	Total	/ 100

Your name:

1. Solve the following inequality. Express your answer as an interval.

$$\frac{x-1}{x+1} > 0$$

Hence

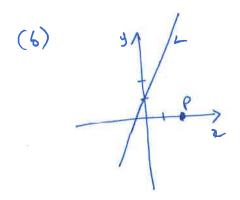
$$\frac{\chi_{-1}}{\chi_{+1}} > 0$$

$$\frac{\chi-1}{\chi+1} > 0$$
 on $(-\infty, -1) \circ (1, \infty)$

2. Consider the polynomials

$$p(x) = 3x^{2} - 1$$
$$q(x) = x^{3} + 2x + 1$$

Write the composition $(p \circ q)(x)$ in expanded form, i.e. in the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, for some n and numbers a_0, a_1, \ldots, a_n . Is $(p \circ q)(x)$ a polynomial?


$$(\rho \circ q)(x) = \rho(\gamma(x)) = 3(x^3 + 2x + 1)^2 - 1$$

$$= 3(x^3 + 2x + 1)(x^3 + 2x + 1) - 1$$

$$= 3(x^6 + 2x^4 + x^3 + 2x^4 + 4x^2 + 2x + 1) - 1$$

$$= 3x^6 + 12x^4 + 6x^3 + 12x^2 + 12x + 2$$

- 3. (a) If a Line L has slope $m \neq 0$, what is the slope of a line L'
 - i. perpendicular to L
 - ii. parallel to L
 - (b) Sketch the Line L: y = 2x + 1 and point P: (2,0)
 - (c) Write down the equation for the line L' perpendicular to L passing through P
 - (d) Find the coordinates of the point of intersection of L with L'

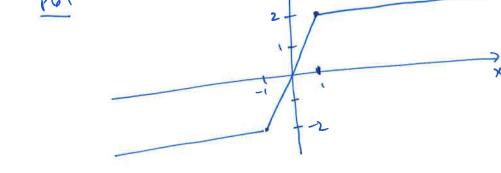
(c) l'hos stope
$$-\frac{1}{2}$$
. Hure $L': y-o=-\frac{1}{2}(x-2)$
=> $y=-\frac{1}{2}x+1$

$$-\frac{1}{2}x+1 = 2x+1$$

$$0 = \frac{5}{2}x$$

$$0 = \frac{5}{2}x$$

$$y = 0$$


$$y = 2.0 + 1 = 1$$

$$y = 100 + 1 = 1$$

$$y = 1$$

- 4. Let f(x) = |x+1| |x-1|
 - (a) Plot the graph of f(x)
 - (b) Is f(x) a one-to-one function? Justify your answer.
 - (c) Is f(x) an even or odd function? Justify your answer.
 - (d) Plot the graph of $\frac{1}{2}f(x+2)+2$ using simple transformations of f(x)

(a) on
$$x<-1$$
: $f(x) = -(x+i) - (-(x-i)) = -2$
on $-1 \le x \le 1$: $f(x) = (x+i) + (x-i) = 2x$
on $x>1$: $f(x) = (x+i) - (x-i) = 2$

(6) No, by he horitantal line tost

(e) f(x) is odd since f(-x)= 1-x+11-1-x-11 = (x-11 - 1x+1) = - (1x+11 - (x-11) = - f(x)

f(x) is not even! Graph is not symmetric!

(d) Graph of \(\frac{1}{2} \) fix+2) +2 is the graph of fixed shifted left by 2, scaled relically by factor of \(\frac{1}{2} \) and shifted upwards by 2

TURN OVER

- 5. (a) For which fixed a does $x^2 + 2(a-1)x + a^2 = 0$ have
 - i. No solution in x
 - ii. One solution in x
 - iii. Two solutions in x
 - (b) Complete the square of $x^2 + 2(a-1)x + a^2$ and find the coordinates of the vertex of the parabola, when $x^2 + 2(a-1)x + a^2$ is viewed as a function in x

(9) We have
$$D = {}^{n}b^{2} - 4ac^{n} = (2(a-i))^{2} - 4a^{2}$$

$$= 4(a^{2} - 2a + 1) - 4a^{2}$$

$$= -8a + 4$$
So (1) if $D = 0 \Leftrightarrow -8a + 4 < 0 \Leftrightarrow a > \frac{1}{2}$
(ii) if $D = 0 \Leftrightarrow a = \frac{1}{2}$
(iii) if $D > 0 \Leftrightarrow a < \frac{1}{2}$

(b)
$$\chi^2 + 2(\alpha - 1)\chi + \alpha^2 = \chi^2 + 2(\alpha - 1)\chi + (\alpha - 1)^2 - (\alpha - 1)^2 + 4^2$$

$$= (\chi + \alpha - 1)^2 - \alpha^2 + 2\alpha - 1 + \alpha^2$$

$$= (\chi + \alpha - 1)^2 + 2\alpha - 1$$

$$\Rightarrow \text{ Vestox at } (1 - \alpha, 2\alpha - 1)$$