# DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

### NO CALCULATORS PERMITTED.

# EXAM TIME IS 60 MINUTES.

## THE EXAM CONSISTS OF 5 QUESTIONS.

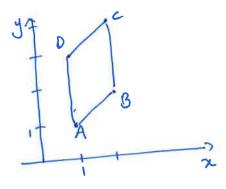
| Your name:            |  |
|-----------------------|--|
| Your SID:             |  |
| Your Section and GSI: |  |

| Question 1 | / 20  |
|------------|-------|
| Question 2 | / 20  |
| Question 3 | / 20  |
| Question 4 | / 20  |
| Question 5 | / 20  |
| Total      | / 100 |

1. Consider the rational function

$$f(x) = \frac{(x-1)(x+1)(x+2)}{x^3 + x}$$

- (a) Does f(x) have a horizontal asymptote? If so, what is it?
- (b) Does f(x) have vertical asymptotes? If so, what are they?
- (c) Does f(x) have any x-intercepts? If so, what are they?
- (d) Does f(x) have a y-intercept? If so, what is it?
- (e) Find the region in which f(x) is positive. Express your answer as a union of intervals.


(a) 
$$f(x) \approx \frac{x^3}{x^3} = 1$$
 near  $\pm \infty$   $\Rightarrow$  horitantal asymphote  $y=0$ 

(b) 
$$\chi^3 + \chi = \chi(\chi^2 + 1) \Rightarrow \text{ Vertical asymptote at } \chi = 0$$

c) 
$$x - infocepts$$
 where  $f(k) = 0$  (k-1)(k+1)(k+2) = 0  
(E)  $x = 1, -1$  or  $-2$ 

2. Let A:(1,1), B:(2,2), C:(2,4) and D:(1,3)

- (a) Sketch the parallelogram ABCD in a coordinate system
- (b) Find the area of ABCD
- (c) Find the perimeter of ABCD
- (d) Find the midpoint of ABCD (i.e. the intersection of AC and DB)



height = 1 (distance of likes AD and BC) Lym AD = 2

a Area = 2

(c) length AB = [12-12] = [2 => perinehr = 2 (40+ AB) = 2 (2+12) = 4+212

(4)

midpoint = midpoint of line section AC  $= \left(\frac{1+2}{2}, \frac{1+4}{2}\right) = \left(1.5, 2.5\right)$ 

3. The following equation describes an ellipse

$$4x^2 + 9y^2 - 8x + 36y + 4 = 0$$

- (a) Write the above equation in the form  $\left(\frac{x-h}{a}\right)^2 + \left(\frac{y-v}{b}\right)^2 = 1$
- (b) Find the area of the ellipse
- (c) Find the center of the ellipse

(a) 
$$4x^{2}-8x + 9y^{2}+36y + 4=0$$
  
(b)  $4(x^{2}-2x+1-1) + 9(y^{2}+4y+4-4) + 4=0$   
(c)  $4[(x-1)^{2}-1] + 9((y+2)^{2}-4) + 4=0$   
(d)  $4(x-1)^{2}+9(y+2)^{2}=36$   
(e)  $4(x-1)^{2}+9(y+2)^{2}=36$   
(f)  $4(x-1)^{2}+9(y+2)^{2}=36$   
(g)  $4(x-1)^{2}+9(y+2)^{2}=1$ 

(e) area: 
$$2.3.\pi = 6\pi$$

- 4. This is a multiple choice question. You do not need to show any work but you will lose two points for any wrong answer.
  - (a) Which of the following numbers is greatest? (Hint:  $2^{10} = 1024$ )
- ii)  $10^{30}$  iii)  $9^{29}$  iv)  $2^{98}$
- (b)  $\frac{2^{\left(2^{(2^2)}\right)}}{(2^2)^{(2^2)}}$  is equal to
  - i) 128 (ii) 256 iii) 512 iv) 1024
- (c)  $2^{4 \log_{16} 2 1}$  is equal to
  - i)  $\frac{1}{2}$  (ii) 1 iii) 2 iv) 4
- (d) area $(\frac{1}{r}, 3, e^2)$  is equal to
  - (i)2 ln(3) ii) ln(3) 2 iii)  $e^2 3$  iv)  $3 e^2$

- (e)  $\ln\left(\frac{x}{x+1}\right) + \ln(2x+2) = 1$  has solution
  - i) e ii) 2e iii)  $\frac{e}{2}$  iv) 1

TURN OVER

- 5. (a) Explain why for t small we have  $\ln(1+t) \approx t$ 
  - (b) Use part (a) to show that for t small  $\exp(t) \approx 1 + t$
  - (c) Use part (b) to show that for n large  $\exp(t) \approx \left(1 + \frac{t}{n}\right)^n$
  - (d) Use part (a) to find an approximate value of

$$\frac{e^{1.001}e^{2.002}}{e^3}$$

(a) by (1++) = alea (/x, 1, 1++)

Sketor

Thus ln(1++) & + for small t

Expondialy we obtain  $e^{\ln(1+t)} \approx e^{t}$  for small t

we have  $e^t = (e^{t_n})^n = (1 + t_n)^n$ , where n is chosen such that  $t_n$  very small, and  $e^{t_n} \approx 1 + t_n$  is (0) a good approximation

 $\frac{e^{1.001}e^{2.002}}{e^3} = \frac{e^{1}e^{2}e^{0.001}e^{0.002}}{e^{3}} = e^{0.003}$ 

≈ 1.003