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Teaching Philosophy  

Mathematics is one of the great collective human endeavours and good teaching is 
fundamental to its development. This is the case throughout all mathematics, from elementary 
school to pure research. Significant advances are often made by individuals, but it is through 
our joint efforts that the subject flourishes. If Euclid had gained his insight into geometry and 
been content to share it with no one, mathematics would likely be unrecognizable today. 
 
Learning mathematics is hard. To the uninitiated it is veiled in mystery, with a seemingly 
impenetrable language all of its own. In fact, mathematics is deeply intuitive, built from our 
most basic observations about the behaviour of the natural world. Being able to see past the 
technicalities of the language to the underlying foundational concepts is one of the key skills 
required to master the subject. This is why good tuition is so vital: the teacher acts as a guide, 
placing ideas in context, gradually revealing the elegant core principles. Truly great teachers 
give the student the sense that they are discovering the subject for themselves.  
 
We all begin teaching with the experience of being taught. As a student, one comes to 
recognize both good and bad tuition. My first experience of good tuition was during my 
Cambridge entrance interview. After the formal interview, the professor took extra time to 
explain how what I had just seen could be used to prove the irrationality of ʌ��7KLV�VPDOO�
moment had a big impact on me: that someone so advanced had taken the time to develop my 
understanding gave me confidence in my own abilities. At the same time, his enthusiasm 
renewed my own. This experience has gone on to form the backbone of my approach to 
teaching: always be generous to students and let them see how passionate you are about the 
subject. If a student is struggling, office hours should go on until they understand and not 
when the bell rings. If a student wants to see how a concept develops, take time to show 
them.  
 
In the years following this experience I have learned much, both as a student and a teacher, 
about what good tuition means.  The following core principles form the foundation of my 
own teaching philosophy:  
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x Be able to lucidly explain new and difficult ideas 
x Have a good relationship with the class 
x Be organised and well prepared  
x Show enthusiasm for the subject 
x Be approachable and available 
x Be patient, setting an appropriate pace and difficulty 
x Actively make efforts to improve student confidence 

 

Teaching Strategy 

Good teaching is about effectively putting these principles into practice. How one does this 
depends on the audience.  For example, supervising a senior thesis is very different than 
teaching a large undergraduate class.  Regardless of the situation, it is vital to be thoroughly 
prepared before seeing students. As such, when developing a new course I first assess the 
academic background of the class before constructing a syllabus and writing lectures.  For 
example, before I started teaching linear algebra at King’s College I spoke to other professors 
about the content of the prerequisite courses.  In all my courses, I make sure electronic notes 
are available before each lecture so students have a comprehensive exposition of the material 
from the outset. In smaller classes I hand out printed copies of these notes at the beginning of 
each lecture. Students have responded very positively to this as it gives them the core 
material but also the opportunity to embellish it with extra information. As a result, every 
student in the class ends up with a clear and highly detailed set of lecture notes. 

When introducing a new concept, simplicity is key. I make efforts to keep explanations 
concise and always provide simple but instructive examples. For example, when introducing 
cosets of a subgroup, I begin by considering translations of a line in the plane. This sets the 
subject within a coherent narrative and gives the student a clear picture from which they can 
start to build their intuition. 

At the beginning of any course it is important to state the goals of the class as well as the 
commitment expected from the students.  For this reason I use the first lecture to outline the 
syllabus, and give a motivating overview of the subject. I also stress that a difficult problem 
set can take perhaps 10 or more hours of serious work to complete.  This gives students a 
realistic understanding of how much time they need to invest in the material. 

When teaching, it is important to continuously reassess the progress of your students as well 
as your own performance.  This is why a good, open dialogue with your class is vital.  
Getting students to actively interact during lectures is the best way to achieve this.  This is 
especially challenging in large lectures, where students naturally feel more intimidated.   I’ve 
found that a good way to solve this problem is by asking well chosen questions after 
introducing new concepts. This helps to get the students talking and over time they become 
confident enough to ask questions themselves.  I have also found that handing out an informal 
teaching evaluation questionnaire in the first few weeks of a course gives valuable feedback 
about the how to improve lectures in real time.  For example, in my recent linear algebra 
class, I gave extended review lectures before each of the three midterms, responding to 
requests from the class. 

In large classes, lectures are often supplemented by weekly, graduate lead tutorials. I play an 
active role in these, frequently talking to the graduate students who run them. This is very 
important as it gives another way to gauge the class’ progress. I periodically attend the 



tutorials myself, as some students are nervous about coming to office hours and this is a good 
way of speaking to them face to face and building their confidence.  

A challenge inherent to all forms of teaching is dealing with a wide range of abilities.  In any 
class it is inevitable that some students will struggle.  It is important to provide these students 
with the support they need, without neglecting the more able students.  A good solution I’ve 
found is two-fold: provide a wide range of problems of varying difficulty and be available 
whenever they ask for help. The people who are struggling will be able to find a foothold in 
the easier exercises and slowly build their understanding; the best students will be challenged 
by the more difficult exercises. If a student has spent time on a problem but been unable to 
make progress, I encourage them to come and speak to me. I always take the time to explain 
the solution to every problem I am asked about. In general, I encourage as many of my 
students as possible to come to my office hours.   

Finally I feel that it is important to share with the students my own love of the subject. 
Mathematics is beautiful and mysterious, with so much still to be discovered. This attitude is 
reflected in the way I teach. I always take time to expand on the deeper aspects of any subject 
I’m asked about.  Many of my best students have come back to do independent study courses 
motivated by these experiences.  
 

Teaching Experience  

In the six years since I completed my PhD, my teaching responsibilities have largely focused 
on undergraduate and graduate mathematics.   

I have taught the following undergraduate courses: 

x Honours Linear Algebra and Differential Equations  
UC Berkeley, Lower Division, 4 credits, 30-40 students 

x Abstract Algebra 
UC Berkeley, Upper Division, 4 credits, 30-40 students, taught 5 classes 

x Honours Multivariable Calculus 
UC Berkeley, Lower Division, 4 credits, 30-40 students 

x Linear Algebra 
Nottingham and King’s College London, 200-300 students, taught 3 classes 

x Foundations of Mathematics for Biology and Chemistry Majors 
Nottingham, 20-30 students 

x Rings and Modules 
King’s College London, 50-60 students, taught 2 classes 
 

I have taught the following graduate courses: 
 

x Algebraic Number Theory and the Langlands Program 
UC Berkeley, 10-20 students 

x Modular Forms 
UC Berkeley, 10-20 students 

x Introduction to the Geometric Langlands Program 
Nottingham, 5-10 students 
 

I have supervised the following senior undergraduate theses: 



x Derived Categories 
x Complex Semi-Simple Lie Algebras 
x Differential Equations and Stokes Theorem 
x The Etale Fundamental Group 
x The p-adic Number 
x Central Simple Algebras and the Brauer Group 
x Introduction to Category Theory 

 
I have supervised the following independent undergraduate and graduate reading courses in 
the following topics: 
 

x Elliptic Curves 
x p-adic Hodge Theory 
x p-adic Modular Forms 
x Etale Cohomology 
x Automorphic Representations 
x Smooth Representation Theory of p-adic Reductive Groups 
x Commutative Algebra 

I have organised and taught in the following research study group: 

x Geometric Langlands and Functoriality, 
King’s College London 
 

I have taught numerous study group lectures in many different research topics at Imperial 
College, UCL,  King’s College London and UC Berkeley. 
 
 
Course Syllabi, Lectures, Assignments, Examinations 
 
Designing courses in a comprehensive and methodical way is vital to the teaching process. I 
always provide comprehensive, well written lecture notes to all my classes. I have included 
representative samples of the teaching materials I have developed over the last six years.  
More precisely, I have included the following in the appendices: 
 

 
x Syllabus for the abstract algebra class I taught at UC Berkeley, including the 

introductory motivation to the course. (see Appendix A) 
x A lecture from my abstract algebra class where I introduce the concept of a group.  

(see Appendix B) 
x Homework exercises and solutions from my current linear algebra class. (see 

Appendix C) 
x Midterm and final exams for my current linear algebra class. (see Appendix D) 

 
 
 
 
 
 



 
 
Teaching Evaluations 
 
I constantly strive to improve my teaching and student evaluations are an integral part of this 
process.  The following student evaluations are from numerous courses I have taught over the 
last six years. 
 

Mean student ratings on a 4 point scale: 0 (strongly disagree) to 4 (strongly agree) 
King’s College 2011/2012, 226 undergraduate students 

 
 
 
 
 
 
 
 
 

Mean student ratings on a 7 point scale: 0 (lecturer was extremely ineffective) to 7 (lecture 
was extremely effective) 

UC Berkeley 2008 to 2011  
 
 
 
 

Anonymous student evaluations also give the students the opportunity to provide specific 
comments, allowing me to strengthen my teaching. The following are representative 
examples from the last six years: 
 

“Best math professor I have had at Berkeley.  His presentation skills, insight and 
quick thinking are amazing.  But what really sets him apart is his ability to work 
one on one with students.  He takes time out of his schedule to help students 
understand the material and has tremendous patience.  His homework assignments 
are fun too!” - Undergraduate student, Abstract Algebra, 2009 (UC Berkeley) 
 
“Professor Paulin is literally one of the best math professors Berkeley has ever 
seen. I feel so privileged to have taken abstract algebra with him. I was unsure if 
math was the right major for me, but because of him, I see how beautiful math can 
really be.” -  Undergraduate student, Abstract Algebra, 2011 (UC Berkeley) 
 
“Professor Paulin is an excellent teacher.  He is very willing to help students with 
any questions they have.  In addition he presents material in a way that makes it 
very interesting, demonstrating why the theorems work. I really appreciate that he 
gave us notes so we didn’t have to spend the whole class writing.”  - 
Undergraduate student, Multivariable Calculus, 2010 (UC Berkeley) 
 
“He’s very precise when answering questions and really seems like he wants us to 
learn.” Undergraduate student, Multivariable Calculus, 2010 (UC Berkeley) 

3.78 Lecturer is audible 3.58 Lectures are well organised 

3.48 Lecturer explains the 
material clearly 

3.58 Lecturer has a good 
relationship with the class 

3.02 Gives lectures in a 
stimulating manner 

3.41 Lecturer is available outside 
of class 

6.4 
 

Abstract Algebra, 200 undergraduate students 

6.3 Number Theory, 30 graduate students 

6.1 Multivariable Calculus, 20 undergraduate students 



 
 
 
 
Advising 
 
In addition to regular office hours, I tell all my students that I am free to meet them whenever 
they need help.   This one on one interaction is a great way to build a good relationship with 
the class. I also feel it is important to provide pastoral care for students when they need it.  
For example, while at Nottingham I was the personal tutor of 20 students, with whom I met 
several times each semester.  
 
Many of the students who regularly come to my office hours have gone on to do senior theses 
and independent reading courses with me.  I deeply enjoy this form of teaching and I am 
always happy to help my students pursue their interests.  Numerous of my best students have 
gone on to graduate school.   For example, one of my students at UC Berkeley asked me 
about studying mathematics in Cambridge, where I had been an undergraduate.  I encouraged 
and supported his application and after he was accepted we spent time deciding which 
courses he should take.  He is currently a graduate student at the University of Texas, Austin. 
Seeing the evolution of such students over time is perhaps the most rewarding aspect of 
teaching.   
 
Teaching and Technology 
 
I am very interested in enhancing the process of learning mathematics using technology. 
Mathematics is inherently a hierarchical subject: each concept has a hierarchy of concepts 
behind it.  For example, to understand the definition of a ring one must understand the 
definition of an Abelian group, and to understand this one must understand the definition of a 
binary operation on a set.  This leads to an explosion in complexity as one progresses through 
the subject.  Truly mastering a concept involves understanding the full hierarchy of 
definitions behind it.  This can be extremely daunting.  If a student looks up a concept in a 
book they are confronted with new concepts they may not understand.  They look these up 
and are faced with the same problem. Very soon the student has travelled up one branch of 
the overall hierarchy graph and is essentially clueless about all the others.  This is one of the 
reasons learning mathematics so difficult.  The real problem is that the traditional methods of 
learning are inherently linear so generally fail to give a clear picture of this overall hierarchy. 
 
I am currently in the early stages of developing software to address this shortcoming.  More 
precisely, I am developing a graphical encyclopaedia of Mathematics, which will allow 
students to navigate around different mathematical concepts whilst having a visual 
representation of their position in the overall hierarchy.  Using this, students will have an 
easy way to systematically develop their understanding in a way which is intuitive and 
manageable.  In conjunction with the more traditional methods of teaching this will 
effectively enhance the overall process of learning mathematics.   
 
 
 
 
 
 



Teaching Improvement Activities 
 
I am constantly working to improve my teaching and I continue to make positive changes to 
my courses each time I teach them.   
 
In the summer of 2009 I volunteered to be the supervisor of an IDEAL (The Initiative for 
Diversity in Education and Leadership) scholar at UC Berkeley.  We met twice a week to 
discuss various mathematical topics, largely focussing on representation theory.   
 
I am currently a member of the Equality and Diversity committee at King’s College.  We are 
actively developing methods to promote gender equality throughout the university.  This has 
involved organising open days to promote the scientific contributions of leading female 
academics. We have also run focus groups with undergraduates to hear their concerns and 
suggestions.   
 
I am committed to teaching at all levels and recently volunteered to assist King’s College 
London in the development of a new government sponsored mathematics high school.  This 
involved giving several lectures to prospective students, where I introduced them to higher 
mathematical ideas.  This was a very positive experience, and I look forward to doing it again 
in the future.   
 
 
Conclusion 

Having taught undergraduate and graduate Mathematics for six years I have come to love 
teaching. I find it stimulating, satisfying and the variety of challenges enhancing. I enjoy the 
commitment and structure. The exposure to enthusiastic young minds gives my own research 
context and worth. I bring to teaching mathematical knowledge, true commitment and 
enthusiasm. My students are part of my mathematical life, and as their teacher it is my 
responsibility and privilege to be pivotal in their mathematical journey. Teaching is so much 
more than standing in front of a class explaining something you understand and they do not. 
It is about the most basic human urge - to connect and share a common passion. Done well, it 
is of lasting significance for everyone involved. 
 
 
 
 
 



Appendix A

Math 113

Abstract Algebra

Professor Alexander Paulin

apaulin@math.berkeley.edu
math.berkeley.edu/∼apaulin/
Room 887
Office Hours: Monday 10am -12pm; Wednesday 2pm - 5pm

Course Description: Throughout your mathematical education you’ve been exposed to
many different forms of algebra. The most important include the integers, real and complex
numbers, polynomials, functions and matrices. Abstract algebra encompasses all of these
and more. Roughly speaking, abstract algebra studies sets equipped with natural laws of
composition. The three basic examples we will study are called Groups, Rings, and Fields.
A group is, roughly, a set with a law of composition satisfying certain axioms. Examples of
groups include the integers equipped with addition, the non-zero real numbers equipped with
multiplication, and invertible n by nmatrices equipped with matrix multiplication. However,
groups arise in many other diverse ways. For example, the symmetries of an object in space
naturally comprise a group. The moves that one can do on Rubik’s cube comprise a fun
example of a group. After studying many examples of groups, we will develop some general
theory which concerns the basic principles underlying all groups.
A ring is a set equipped with two laws of composition satisfying certain axioms. An example
is the integers with addition and multiplication. Another example is the ring of polynomials.
A field is a ring with certain additional nice properties. We will study certain classes of ring
which possess many properties in common with the integers.
In addition to the specific topics we will study, which lie at the foundations of much of
higher mathematics, an important goal of the course is to expand facility with mathematical
reasoning and proofs in general, as a transition to more advanced mathematics courses, and
for logical thinking outside of mathematics as well.
Prerequisite(s): Linear Algebra and Differential Equations (Math 54).

Credit: 4

Text(s): We will not be using a specific book for the course. Everything you need to know
will be in the notes provided. If you would like to supplement these with further reading I
recommend Abstract Algebra, by Dummit and Foote, or Classic Algebra by P.M. Cohn.
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Grade Distribution:
Weekly Homework Assignments 20%
2 Midterm Exams 30%
Final Exam 50%

Tentative Course Outline:
The weekly coverage might change as it depends on the progress of the class.

Week Content

Week 1 • Introduction; Sets; Functions; Equivalence Relations.

Week 2 • Integers; The Division Algorithm; The Fundamental Theorem of Arith-
metic; Congruences.

Week 3 • Groups; Homomorphisms; Lagrange’s Theorem.

Week 4 • Cyclic Groups; Permutation Groups and Group Actions; Orbit-Stabiliser.

Week 5
• Dihedral Groups; Normal Subgroups and Isomorphism Theorems;
• Review Lecture.
• First Midterm Exam.

Week 6 • Direct Products and Direct Sums; Torsion Groups;

Week 7 • Finite Abelian Groups.

Week 8 • Structure Theorem for Finitely Generated Abelian Groups.
• Midterm Exam

Week 9 • Rings and Fields; Homomorphisms; Integral Domains;

Week 10
• Field of Fractions; Ideals and Isomorphism Theorems;
• Review Lecture.
• Second Midterm Exam.

Week 11 • Polynomial Rings; Euclidean Domains;

Week 12 • Unique Factorisation Domains;
• Reading assignment: Something interesting

Week 13 • Gauss’ Lemma; Eisenstein’s Criterion.

Week 14 • Field Extensions and Basic Galois Theory

Week 15 • Review Lecture
• Final Exam
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Introduction

What is Algebra?

If you ask someone on the street this question the most likely response will be: “Something
horrible to do with x, y and z!”. If you’re lucky enough to bump into a mathematician
then you might get something along the lines of: “Algebra is the abstract encapsulation of
arithmetic laws of composition”.

Algebra is deep. In this context, this means that it permeates most of our mathemati-
cal intuitions. In fact the first mathematical concepts we ever encounter are the foundation
of the subject. Let me summarize the first six years of your mathematical education:

The concept of Unity. The number 1.
You probably always understood this, even as a little baby!

↓

N := {1, 2, 3...}, the natural numbers.
N comes equipped with two natural operations + and ×.

↓

Z := {...− 2,−1, 0, 1, 2, ...}, the integers.
We form these by using geometric intuition thinking of N as sitting on a line. Z also comes
with + and ×. Addition on Z has particularly good properties, e.g. additive inverses exist.

↓

Q := {a

b
|a, b ∈ Z, b ̸= 0}, the rational numbers.

We form these by taking Z and formally dividing through by non-negative integers. We
can again use geometric insight to picture Q as points on a line. The rational numbers also

come equipped with + and ×. This time, multiplication is has particularly good
properties, e.g non-zero elements have multiplicative inverses.

Notice that at each stage the operations of + and × become better behaved. These ideas
are very simple, but also profound. We spend years understanding how + and × behave on
Q. e.g.

a+ b = b+ a ∀a, b ∈ Q,

or
a× (b+ c) = a× b+ a× c ∀a, b, c ∈ Q.

3



The central idea behind abstract algebra is to define a larger class of objects (sets with extra
structure), of which Z and Q are definitive members.

(Z,+) −→ Groups

(Z,+,×) −→ Rings

(Q,+,×) −→ Fields

In linear algebra the analogous idea is

(Rn,+,multiplication by scalars) −→ V ector Spaces over R

The amazing thing is that these vague ideas mean something very precise and have far far
more depth than one could ever imagine.
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Appendix B

Groups

Definition. Let G be a set. A binary operation is a map of sets:

∗ : G×G → G.

For ease of notation we write ∗(a, b) = a ∗ b ∀a, b ∈ G. Any binary operation on G gives a
way of combining elements and we say that a ∗ b is the composition of a and b. As we have
seen, if G = Z then + and × are natural examples of binary operations.

Definition. A group is a set G, together with a binary operation ∗, such that the following
hold:

1. (Associativity): (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ G.

2. (Existence of identity): ∃e ∈ G such that a ∗ e = e ∗ a = a ∀a ∈ G.

3. (Existence of inverses): Given a ∈ G, ∃b ∈ G such that a ∗ b = b ∗ a = e.

Remarks. 1. We have seen five different examples thus far: (Z,+), (Q,+), (Q\{0},×),
(Z/mZ,+), and (Z/mZ,×). Another example is that of a real vector space under
addition. Note that (Z,×) is not a group. Also note that this gives examples of groups
which are both finite and infinite. The more mathematics you learn the more you’ll see
that groups are everywhere.

2. A set with a binary operation is called a monoid if we demand that only the first two
properties hold. From this point of view, a group is a monoid in which every element
is invertible. (Z,×) is a monoid.

3. Observe that in all of the examples I’ve given the binary operation is commutative, i.e.
a ∗ b = b ∗ a ∀a, b ∈ G. We do not include this in our definition as this would be too
restrictive as we’ll see later. For example the set of invertible n× n matrices with real
coefficients forms a group under matrix multiplication. However we know that matrix
multiplication does not commute in general.

So a group is a set with extra structure. In set theory we have the natural concept of a map
between sets. The following is the analogous concept for groups:

Definition. Let (G, ∗) and (H, ◦) be two groups. A homomorphism f , from G to H is a
map of sets f : G → H, such that f(x ∗ y) = f(x) ◦ f(y) ∀x, y ∈ G. If G = H and f = IdG
we call f the identity homomorphism.

Remarks. 1. Intuitively one should thing about a homomorphism as a map of sets which
preserves the underlying binary operations. It’s the same idea as a linear map between
vector spaces.
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2. A homomorphism f : G → H which is bijective is called an isomorphism. Two
groups are said to be isomorphic if there exists an isomorphism between them. Intu-
itively two groups being isomorphic means that they are the “same” group, but viewed
from different perspectives.

3. A homomorphism from a group to itself (i.e. f : G → G) is called an endomorphism.
An endomorphism which is also an isomorphism is called an automorphism.

Proposition. Let (G, ∗), (H, ◦) and (M,!) be three groups. Let f : G → H and g : H → M
be homomorphism. Then the composition gf : G → M is a homomorphism.

Proof. Let x, y ∈ G. gf(x ∗ y) = g(f(x) ◦ f(y)) = gf(x)!gf(y).

Remark. Composition of homomorphism gives the collection of endomorphisms of a group
the structure of a monoid. The subset of automorphisms has the stucture of a group under
composition. We denote it by Aut(G).

Proposition. Let (G, ∗) be a group. The identity element is unique.

Proof. Assume e, e′ ∈ G both behave like the identity. Then e = e ∗ e′ = e′.

Proposition. Let (G, ∗) be a group. For a ∈ G there is only one element which behaves like
the inverse of a.

Proof. Assume a ∈ G has 2 inverses, b, c ∈ G. Then:

(a ∗ b) = e

⇒ c ∗ (a ∗ b) = c ∗ e

⇒ (c ∗ a) ∗ b = c (associativity and identity)

⇒ e ∗ b = c

⇒ b = c

The first proposition tells us that we can write e ∈ G for the identity and it is well defined.
Similarly the second proposition tells us that for a ∈ G we can write a−1 ∈ G for the inverse
in a well defined way. The proof of the second result gives a good example of how we prove
results for abstract groups. We can only use the axioms, nothing else.

We also have an analogue of the cancellation law:

Proposition. Let a, b, c ∈ G a group. Then

a ∗ c = a ∗ b ⇒ c = b and c ∗ a = b ∗ a ⇒ c = b

Proof. Compose on left or right by a−1 ∈ G, then apply the associativity and inverses and
identity axioms.
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Definition. A group (G, ∗) is called Abelian if it also satisfies

a ∗ b = b ∗ a ∀a, b ∈ G.

This is also called the commutative property.

In linear algebra, we can talk about subspaces of vector spaces. We have an analogous
concept in group theory.

Definition. Let (G, ∗) be a group. A subgroup of G is a subset H ⊂ G such that

1. e ∈ H

2. x, y ∈ H ⇒ x ∗ y ∈ H

3. x ∈ H ⇒ x−1 ∈ H

Remarks. 1. A subgroup is naturally a group under the induced binary operation. It
clearly has the same identity element.

2. If m ∈ N, then the subset mZ := {ma|a ∈ Z}is a subgroup of (Z,+).

Proposition. If H,K ⊂ G are subgroups ⇒ H ∩K ⊂ G is a subgroup.

Proof. 1. As H,K subgroups, e ∈ Hande ∈ K ⇒ e ∈ H ∩K.

2. Let x, y ∈ H ∩K ⇒ x ∗ y ∈ H and x ∗ y ∈ K ⇒ x ∗ y ∈ H ∩K.

3. Let x ∈ H ∩K ⇒ x−1 ∈ H and x−1 ∈ K ⇒ x−1 ∈ H ∩K.

This result clearly extends to any collection of subgroups of G.
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Appendix C

CM222, Linear Algebra Exercise Sheet 3

Due in tutorials, 24 Oct.

1. Which of the following formulas define linear maps L : P → P?

(a) (L(p))(x) = x2p(x);

(b) (L(p))(x) = x2 + p(x);

(c) (L(p))(x) = (p(x))2;

(d) (L(p))(x) = p(x2);

(e) (L(p))(x) = p′′(x);

(f) (L(p))(x) = p(p(x));

(g) (L(p))(x) = x2p′′(2x+ 2) + 2p(x2).

2. Suppose that U , V and W are vector spaces, and that f : V → W and g : U → V are
linear maps.

(a) Prove that the composite f ◦ g is a linear map from U to W .

(b) Prove that if f is an isomorphism then so is its inverse map from W to V .

3. Let V and W be vector spaces, S a subset of V , and f : V → W a linear map.

(a) Prove that ker f is a subspace of V .

(b) Prove that the image of f is a subspace of W .

(c) Prove that f is injective if and only if ker f = {0}.

4. Let f : M2,2(R) → M2,2(R) be the map defined by f(A) = A − At (where At denotes
the transpose of A).

(a) Prove that f is a linear map.

(b) Find a basis for ker(f).

(c) Find the rank and nullity of f .

(d) Find a basis for im(f).

5. Find the rank and nullity of each of the following matrices:

(a)

⎛

⎝

2 −1
−1 0
1 −1

⎞

⎠.

(b)

(

2 −1 1
1 0 −1

)

.

(c)

⎛

⎝

1 −1 0
0 1 −1

−1 0 1

⎞

⎠.
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6. Let f : R2 → R2 be the linear map defined by reflection in the line x+ y = 0.

(a) Find the matrix Af of f with respect to the standard basis S.

(b) Find the matrix A′

f of f with respect to the basis

S ′ =

{(

1
1

)

,

(

1
−1

)}

.

(c) Verify that A′

f = PAfP
−1 where P is the transition matrix from S to S ′.

7. Let Pn denote the vector space of real polynomials of degree at most n. Find the
matrices of the following linear maps with respect to the bases {1, x, x2, x3} for P3 and
{1, x, x2, x3, x4} for P4.

(a) φ : P3 → P4 defined by (φ(p))(x) = xp(x);

(b) ψ : P4 → P4 defined by (ψ(p))(x) = p(−x);

(c) ξ : P4 → P3 defined by (ξ(p))(x) = p′(x) (the derivative of p(x));

(d) µ : P3 → P3 defined by µ = ξ ◦ ψ ◦ φ.
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CM222, Linear Algebra Solution Sheet 3

1. Which of the following formulas define linear maps L : P → P?

(a) (L(p))(x) = x2p(x);
Solution: YES. Suppose p, q ∈ P . Then L(p)(x) = x2p(x), L(q)(x) =
x2q(x) and (p + q)(x) = p(x) + q(x), so

L(p + q)(x) = x2((p + q)(x))
= x2(p(x) + q(x))
= x2p(x) + x2q(x)
= L(p)(x) + L(q)(x)
= (L(p) + L(q))(x).

Therefore L(p + q) = L(p) + L(q).
If p ∈ P and α ∈ R, then

L(αp)(x) = x2(αp(x)) = α(x2p(x)) = αL(p)(x),

so L(αp) = αL(p).

(b) (L(p))(x) = x2 + p(x);
Solution: NO. Note for example that L(0) = x2 ̸= 0, so L cannot
be a linear map.

(c) (L(p))(x) = (p(x))2;
Solution: NO. Note for example that for any p ∈ P , α ∈ R, we have

L(αp)(x) = (αp(x))2 = α2(p(x))2 = α2L(p)(x).

Taking any α so that α ̸= α2 (e.g., α = 2) and any p so that L(p) ̸= 0
(e.g., p(x) = 1, the constant function), we get

L(αp) = α2L(p) ̸= αL(p).

(d) (L(p))(x) = p(x2);
Solution: YES. If p, q ∈ P , then

L(p + q)(x) = (p + q)(x2) = p(x2) + q(x2) = L(p)(x) + L(q)(x),

so L(p + q) = L(p) + L(q).
If α ∈ R and p ∈ P , then

L(αp)(x) = αp(x2) = αL(p)(x),

so L(αp) = αL(p).

(e) (L(p))(x) = p′′(x);
Solution: YES. If p, q ∈ P , then

L(p + q)(x) = (p + q)′′(x) = p′′(x) + q′′(x) = L(p)(x) + L(q)(x),

and if α ∈ R, then

L(αp)(x) = αp′′(x) = αL(p)(x),

so L(αp) = αL(p).

(f) (L(p))(x) = p(p(x));
Solution: NO. Take for example p(x) = x and α = 2. Then
L(p)(x) = p(x) = x, so αL(p)(x) = 2. To compute L(αp), let q = αp
so q(x) = 2x and

L(q)(x) = q(q(x)) = q(2x) = 4x,

so αL(p) ̸= L(αp).
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(g) (L(p))(x) = x2p′′(2x + 2) + 2p(x2).
Solution: YES. If p, q ∈ P , then

L(p + q)(x) = x2(p + q)′′(2x + 2) + 2(p + q)(x2)
= x2(p′′ + q′′)(2x + 2) + 2(p(x2) + q(x2))
= x2p′′(2x + 2) + x2q′′(2x + 2) + 2p(x2) + 2q(x2)
= (x2p′′(2x + 2) + 2p(x2)) + (x2q′′(2x + 2) + 2q(x2))
= L(p(x)) + L(q(x)).

Similarly if p ∈ P , α ∈ R, then

L(αp)(x) = x2(αp)′′(2x + 2) + 2(αp)(x2)
= αx2p′′(2x + 2) + α(2p(x2))
= αL(p)(x).

2. Suppose that U , V and W are vector spaces, and that f : V → W and
g : U → V are linear maps.

(a) Prove that the composite f ◦ g is a linear map from U to W .
Solution: If u, u′ ∈ U , then (f(g(u + u′)) = f(g(u) + g(u′)) (since g
is linear), and this is equal to f(g(u)) + f(g(u′)) (since f is linear).
Therefore (f ◦ g)(u + u′) = (f ◦ g)(u) + (f ◦ g)(u′).
Similarly, if α ∈ R and u ∈ U , then f(g(αu)) = f(αg(u)) = αf(g(u)),
so (f ◦ g)(αu) = α(f ◦ g)(u).

(b) Prove that if f is an isomorphism then so is its inverse from W to V .
Solution: Let g be the inverse of f , so f(g(w)) = w for all w ∈ W
and g(f(v)) for all v ∈ V . We know that g is bijective; we must show
that g(w+w′) = g(w)+ g(w′) and g(αw) = αg(w) for all w, w′ ∈ W ,
α ∈ R. Since f is injective (f(v1) = f(v2) ⇒ v1 = v2), the first
equation follows if we show that f(g(w + w′)) = f(g(w) + g(w′)).
Since f is linear,

f(g(w) + g(w′)) = f(g(w)) + f(g(w′)) = w + w′ = f(g(w + w′)).

Similarly f(αg(w)) = αf(g(w)) = αw = f(g(αw) implies that g(αw) =
αg(w).

3. Let V and W be vector spaces and f : V → W a linear map.

(a) Prove that ker f is a subspace of V .
Solution: If v, v′ ∈ ker f , then f(v) = f(v′) = 0, so f(v + v′) =
f(v)+ f(v′) = 0 + 0 = 0 and v + v′ ∈ ker f . If α ∈ R (and v ∈ ker f),
then f(αv) = αf(v) = α.0 = 0, so αv ∈ ker f .

(b) Prove that the image of f is a subspace of W .
Solution: If w, w′ ∈ im f , then w = f(v) and w′ = f(v′) for some
v, v′ ∈ V . Therefore w + w′ = f(v) + f(v′) = f(v + v′) ∈ im f . If
α ∈ R, then αw = αf(v) = f(αv) ∈ im f .

(c) Prove that f is injective if and only if kerf = {0}.
Solution: Suppose that f is injective. If v ∈ ker f , then f(v) = 0 =
f(0) implies that v = 0 (since f is injective). So ker f = {0}.
Suppose that ker f = 0. If f(v) = f(v′), then f(v − v′) = f(v) −
f(v′) = 0, so v − v′ ∈ ker f . It follows that v − v′ = 0, so v = v′.
Therefore f is injective.

4. Let f : M2,2(R) → M2,2(R) be the map defined by f(A) = A−At (where
At denotes the transpose of A).

(a) Prove that f is a linear map.

Solution: Note that if A =

(

a b
c d

)

∈ M2,2(R), then

f(A) =

(

a b
c d

)

−

(

a c
b d

)

=

(

0 b − c
c − b 0

)

.
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So if A =

(

a b
c d

)

, A′ =

(

a′ b′

c′ d′

)

and αα′ ∈ R, then

f(A + A′) =

(

0 (b + b) − (c + c′)
(c + c′) − (b + b′) 0

)

=

(

0 b − c
c − b 0

)

+

(

0 b′ − c′

c′ − b′ 0

)

= f(A) + f(A′).

(b) Find a basis for ker(f).
Solution: From the first formula in the solution to (a), we see that

f(A) =

(

0 0
0 0

)

means that b = c. So A is in ker(f) if and only if

A has the form

(

a b
b d

)

, which means that

A = a

(

1 0
0 0

)

+ b

(

0 1
1 0

)

+ d

(

0 0
0 1

)

.

Therefore A is in the span of the set of matrices {A1, A2, A3} where

A1 =

(

1 0
0 0

)

, A2 =

(

0 1
1 0

)

, A3 =

(

0 0
0 1

)

.

These matrices are linear independent since

α1A1 + α2A2 + α3A3 =

(

α1 α2

α2 α3

)

is the zero matrix if and only if α1 = α2 = α3 = 0. Therefore
{A1, A2, A3} is a basis for ker(f).

(c) Find the rank and nullity of f .
Solution: From part (b) we see that nullity(f) = 3. Since M2,2(R)
has dimension 4, the rank-nullity theorem shows that rank(f) = 1.

(d) Find a basis for im(f).
Solution: By part (c), the image of has dimension 1, so it suffices
to find a non-zero matrix B in im(f). Taking for example

B = f

((

0 1
0 0

))

=

(

0 1
−1 0

)

,

we have {B} as a basis for im(f).

5. Find the rank and nullity of each of the following matrices:

(a)

⎛

⎝

2 −1
−1 0

1 −1

⎞

⎠.

Solution: Apply row operations, or note that the columns are lin-
early independent, so the rank is 2 and the nullity is 2 − 2 = 0.

(b)

(

2 −1 1
1 0 −1

)

.

Solution: Apply row operations, or note that the rows are linearly
independent, so the rank is 2 and the nullity is 3 − 2 = 1.

(c)

⎛

⎝

1 −1 0
0 1 −1

−1 0 1

⎞

⎠.

Solution: Applying row operations gives

⎛

⎝

1 −1 0
0 1 −1
0 0 0

⎞

⎠, so the

rank is 2 and the nullity is 3 − 2 = 1.
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6. Let f : R2 → R2 be the linear map defined by reflection in the line
x + y = 0.

(a) Find the matrix Af of f with respect to the standard basis S.
Solution: Since f((1, 0)t) = (0,−1)t and f((0, 1)t) = (−1, 0)t, the

matrix is

(

0 −1
−1 0

)

.

(b) Find the matrix A′

f of f with respect to the basis

S′ =

{(

1
1

)

,

(

1
−1

)}

.

Solution: Since f((1, 1)t) = −(1, 1)t and f((1,−1)t) = (1,−1)t, the

matrix is

(

−1 0
0 1

)

.

(c) Verify that A′

f = PAfP−1 where P is the transition matrix from S

to S′. Solution: The transition matrix from S′ to S is

(

1 1
1 −1

)

,

so this is P−1 and P =

(

1 1
1 −1

)−1

= 1

2

(

1 1
1 −1

)

. Therefore

PAfP−1 = 1

2

(

−1 1
−1 −1

)(

0 −1
−1 0

)(

1 1
1 −1

)

=

(

−1 0
0 1

)

= A′

f .

7. Let Pn denote the vector space of real polynomials of degree at most n.
Find the matrices of the following linear maps with respect to the bases
{1, x, x2, x3} for P3 and {1, x, x2, x3, x4} for P4.

(a) φ : P3 → P4 defined by (φ(p))(x) = xp(x);
Solution: Applying φ to the given basis vectors for P3, we have
φ(1) = x, φ(x) = x2, φ(x2) = x3 and φ(x3) = x4. These have coordi-
nate vectors (0, 1, 0, 0, 0)t, (0, 0, 1, 0, 0)t, (0, 0, 0, 1, 0)t and (0, 0, 0, 0, 1)t

with respect to the given basis for P4. Using these as the columns
give the matrix

Aφ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

(b) ψ : P4 → P4 defined by (ψ(p))(x) = p(−x);
Solution: Applying ψ to the given basis vectors for P4, we get
ψ(1) = 1, ψ(x) = −x, ψ(x2) = x2, ψ(x3) = −x3 and ψ(x4) = x4, so
the matrix is

Aφ =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

(c) ξ : P4 → P3 defined by (ξ(p))(x) = p′(x) (the derivative of p(x));
Solution: ξ(1) = 0, ξ(x) = 1, ξ(x2) = 2x, ξ(x3) = 3x2 and ξ(x4) =
4x3, so

Aξ =

⎛

⎜

⎜

⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

⎞

⎟

⎟

⎠

.
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(d) µ : P3 → P3 defined by µ = ξ ◦ ψ ◦ φ.
Solution: Aµ = AξAψAφ =

⎛

⎜

⎜

⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1 0 0 0
0 2 0 0
0 0 −3 0
0 0 0 4

⎞

⎟

⎟

⎠

.
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Appendix D

Full Name:
(block capitals)

Student Number:

Tutorial Group:

5CCM222A Linear Algebra: Class
Test 2

CALCULATORS MAY NOT BE USED
ANSWER GRID: To earn full
marks, you must correctly an-
swer YES or NO in EVERY BOX.
Points will be deducted for each
box that is filled in incorrectly.
You may leave boxes blank, in
which case no marks will be given
or deducted for those boxes. If
you change an answer, make sure
that your final answer is clearly
indicated.
TIME: 30 minutes

a b c d

1

2

3

4

5

MARKS: Each correct box = +1, incorrect = −1.
1. Suppose that S = {v1, v2, v3} is a basis for a three-dimensional real vector

space V , and f : V → R
4 is a linear map whose matrix is

⎛

⎜

⎜

⎝

1 2 −2
−1 0 2
2 1 1
0 3 0

⎞

⎟

⎟

⎠

with respect to the basis S of V and the standard basis of R4. Which of the
following appear as coordinates in the vector f(v1 + 2v3)?

(a) 0
(b) 1
(c) 2
(d) 3

2. Let g : U → V and f : V → W be linear maps of finite-dimensional real vec-
tor spaces. Suppose that f ◦g is injective. Which of the following statements
must then be true?

(a) dim(U) ≤ dim(V )
(b) f is injective
(c) g is injective
(d) dim(U) ≤ dim(W )



3. For which of the following values of µ does the non-homogeneous linear sys-
tem:

x + µy = 2
x + (µ+ 1)y = µ+ 2
2x + µy = 3

have at least one solution?

(a) 2
(b) −1
(c) 1
(d) 0

4. Which of the following matrices have determinant 2?

(a)

⎛

⎝

1 0 1
0 2 0
0 0 1

⎞

⎠

(b)

⎛

⎝

0 1 0
0 0 1
2 0 0

⎞

⎠

(c)

⎛

⎝

1 0 2
0 1 0
1 0 1

⎞

⎠

(d)

⎛

⎝

1 0 2
0 1 0
0 0 1

⎞

⎠

5. Let A be a real n×n-matrix. Which of the following statements are equivalent
to A having non-zero determinant?

(a) AB = I for some real n× n-matrix B.
(b) The equation Ax = 0 has no non-zero solutions x ∈ R

n.
(c) For every vector b ∈ R

n, the equation Ax = b has a solution x ∈ R
n.

(d) The rows of A are linearly dependent.

End of Test 001
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SECTION A

A1. Throughout this question let V be a vector space over R.

(a) Let S = {v1, · · · , vn} be a subset of V . Define each of the following properties:

(i) S is linearly independent.

(ii) S is a spanning set for V .

(iii) S is a basis for V .

(iv) V is finite dimensional.

(b) If S ′ is a finite subset of Span(S), the spanning set of S, prove that Span(S ′) ⊂
Span(S).

(c) Let W ⊂ V be a subset. Define what it means for W to be a subspace of V .
Give an example of a non-empty subset of R3 which is closed under addition
but not under scalar multiplication.

(d) Let V = R4 and consider the four vectors v1, v2, v3 and v4, each belonging to
V , where,

v1 =

⎛

⎜

⎜

⎜

⎝

1
1
3
2

⎞

⎟

⎟

⎟

⎠

, v2 =

⎛

⎜

⎜

⎜

⎝

3
1
1
6

⎞

⎟

⎟

⎟

⎠

, v3 =

⎛

⎜

⎜

⎜

⎝

2
3
2
4

⎞

⎟

⎟

⎟

⎠

, v4 =

⎛

⎜

⎜

⎜

⎝

5
0
3
10

⎞

⎟

⎟

⎟

⎠

.

(i) Find a linear dependency between v1, v2, v3 and v4.

(ii) Let W = Span(v1, v2, v3, v4). Find the dimension of W and give a basis
for W . Justify your answer.
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A2. Let V and W be complex vector spaces.

(a) Define what it means for a map f : V → W to be linear. Prove that if 0V ,0W

are the zero vectors in V and W respectively then

f linear ⇒ f(0V ) = 0W

(b) Let f : V → W be a linear map. Define each of the following:

(i) the kernel of f .

(ii) the image of f .

(c) Prove that if f : V → W is linear then im(f) ⊂ W is a subspace. Further
prove that if V is finite dimensional then im(f) is finite dimensional.

(d) Fix the basis {

(

1
1

)

,

(

1
−1

)

} ⊂ C2 (you do not need to show this is a basis).

Let f be the linear map from C2 to C3 such that

f

(

1
1

)

=

⎛

⎝

3
1
2

⎞

⎠ , f

(

1
−1

)

=

⎛

⎝

1
1
0

⎞

⎠ .

Write down the matrix for f with respect to the basis {

(

3
1

)

,

(

0
1

)

} ⊂ C2 and

the standard basis for C3. What is the nullity of f? What is the rank of f?

3



A3. (a) Let A be an n × n matrix with complex coefficients. Define each of the
following:

(i) λ ∈ C is an eigenvalue of A.

(ii) v ∈ Cn is an eigenvector of A.

(iii) A is diagonalisable.

.

(b) Let A be the matrix

⎛

⎝

4 −1 −1
−1 4 1
−1 1 4

⎞

⎠.

(i) Find all eigenvalues of A.

(ii) Write down an orthogonal real matrix P such that PTAP is a diagonal
matrix.

A4. (a) Let V be a complex vector space. Give the definition of a complex inner
product on V .

(b) Prove that the following is a real inner product on R3:

⟨

⎛

⎝

x

y

z

⎞

⎠ ,

⎛

⎝

x′

y′

z′

⎞

⎠⟩ = 2xx′ + 3yy′ + 4zz′.

(c) Prove that the following is not a real inner product on R3:

⟨

⎛

⎝

x

y

z

⎞

⎠ ,

⎛

⎝

x′

y′

z′

⎞

⎠⟩ = x2x′ + y2y′ + z2z′.

(d) Let C3 be equipped with the standard complex inner product. Apply the

Gram-Schmidt process to the basis v1 =

⎛

⎝

1
0
i

⎞

⎠, v2 =

⎛

⎝

−1
i

1

⎞

⎠ and v3 =

⎛

⎝

0
−1
i+ 1

⎞

⎠

in C3. Using this write down a linear map f : C3 → C3 with im(f) =

Span

⎛

⎝

1
0
i

⎞

⎠ and such that given any v ∈ ker(f) and w ∈ im(f) we have

⟨v,w⟩ = 0.
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SECTION B

B5. Let V be a finite dimensional complex vector space with ordered basis S =
{v1, · · · , vn}.

(a) For v ∈ V let vS ∈ Cn, be v written in coordinates with respect to S. Prove
that this defines a linear map

φS : V → C
n

v *→ vS.

Further prove that φS is an isomorphism.

(b) Let W be a second complex vector space and assume f : V → W is an isomor-
phism. Prove that the inverse map f−1 : W → V is an isomorphism. Using
this, or otherwise, prove that if two vector spaces have the same dimension
then they are isomorphic.

(c) Let f : V → Cn be an isomorphism. Using part (b) find an ordered basis T

for V such that f = φT . Carefully justify your answer. (Hint: consider what
maps to the standard basis)

(d) Let Pn(X) denote the complex vector space of polynomials in the variable X

with complex complex coefficents of degree less than or equal to n− 1. Let ϕ
be the linear map

ϕ : P(X) → P(X)

f(X) →
df(X)

dX
.

Determine the nullity and rank of ϕ. If you use the rank-nullity theorem state
it clearly. Find two ordered bases S, T ⊂ P(X) such that the matrix associated
to ϕ with respect to S and T is of the form:

(

Ir 0

0 0

)

,

where r = rank(ϕ) and Ir is the r × r identity matrix.

Is ϕ diagonalisable? Carefully justify your answer.
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B6. Let A,B be two n× n matrices with complex entries.

(a) Define the characteristic polynomial, pA(X), of A. Prove that λ ∈ C is an
eigenvalue of A if and only if pA(λ) = 0. You may use any results about
invertible matrices as long as you state them clearly.

(b) Define what it means for A to be similar to B. Prove that if A and B are
similar then pA(X) = pB(X). You may use any results about determinants as
long as you state them clearly.

(c) Define the minimal polynomialmA(X) ofA. Prove that ifA and B are similar
then mA(X) = mB(X).

(d) Give examples of matrices A and B such that

(i) pA(X) = pB(X) but mA(X) ̸= mB(X).

(ii) mA(X) = mB(X) but pA(X) ̸= pB(X).

(e) Let T be an upper triangular n × n complex matrix. Prove that if pT(X) =
a0+a1X+ · · ·+an−1X

n−1+Xn then an−1 = −tr(T). Using this prove that the
same result holds for any complex n × n matrix A. You may use any results
from lectures as long as they are clearly stated.

B7. Let V be a complex inner product space, with inner product ⟨ , ⟩.

(a) Define what it means for a subset S = {v1, · · · , vn} ⊂ V to be orthonormal.
Prove that if S is orthonormal then it is linearly independent.

(b) Define what it means for an n × n complex matrix U to be unitary. Prove
that U is unitary if and only if its columns form an orthonormal basis for Cn

with respect to the standard inner product.

(c) State and prove the Pythagorean theorem for complex inner product spaces.
Using this, state and prove the Cauchy-Schwartz inequality for complex inner
product spaces. Using this, state and prove the triangle inequality for complex
inner product spaces.
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B8. Let A and B be complex n× n matrices.

(a) Define the adjoint of A, denoted A∗. Define what it means for A to be self
adjoint. Define what it means for A to be normal. Define what it means for
A to be unitarily diagonalisable.

(b) Prove that for all v,w ∈ Cn we have

⟨Av,w⟩ = ⟨v,A∗
w⟩.

Using this prove that all the eigenvalues of a self adjoint matrix are real.

(c) Assume now that A is a real n × n matrix. Prove that if A is orthogonally
diagonalisable then it is symmetric.

(d) Prove that if A is orthogonally similar to an upper triangular matrix T which
is not diagonal then it is not orthogonally diagonalisable.

(e) Is it possible that a (not orthogonally) diagonalisable matrix A, can satisfy
the same condition as in (d)? Justify your answer, carefully stating any results
you use.

Final Page
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