Subrings, Ideas and Homomorphosius
Definition Let $R$ be a ring. A subset $S \subset R$ is a subring it
$\left.\begin{array}{l}1 / o_{R} \in S \\ 2 / x, y \in S \Rightarrow x+y \in 5 \\ 3 \quad x \in S \Rightarrow-x \in S\end{array}\right\} \begin{gathered}5 \text { a subgroup of } R \text { under } \\ \text { addition }\end{gathered}$
4) $I_{R} \in S$

S $x, y \in S \Rightarrow x y \in S$
Examples: $\mathbb{Z} \subset \mathbb{Q}, \mathbb{Q} \subset \mathbb{R}, \mathbb{R} \subset \mathbb{C}, M_{n}(\mathbb{Z}) \subset M_{n}(\mathbb{R})$
Non-example: $m \mathbb{Z}_{C \mathbb{Z}}$ does not contain 1
Remount $A$ subring is a ring under the induced + and $x$
Definition Let $R$ and $T$ be rings. A homomorphoin from $R t_{0} T$ is a map $\phi: R \longrightarrow T$ such that ! $\phi(x+y)=\phi(x)+\phi(y) \quad \forall x, y \in R$
$2 \phi\left(x \frac{1}{y}\right)^{i a R}=\phi(x) \phi(y)^{i n} \quad \forall x, y \in R$
$3 \phi\left(I_{R}\right)=I_{T}$
Remark
$\prime \Rightarrow \varnothing$ is a group homomarphion from $(R,+) t_{0}\left(T_{1}+\right)$
Isomorphioin (of rings) = Bijective homomorphism (of rings)
$R \cong T \Leftrightarrow \exists \varnothing: R \rightarrow T$ an isomorphisms

Proposition
$\phi: R \longrightarrow T$ a homomorphism $\Rightarrow \operatorname{Im} \phi \subset T$ a subring
Proof $\phi$ a group homomerplusin from $(R,+)$ to $(T,+)$
$\Rightarrow \operatorname{Im}(\phi) \subset T$ a subgroup under addition.
Let $\phi(x), \phi(y) \in \operatorname{Im} \phi \Rightarrow \phi(x) \phi(y)=\phi(x y)$ Closure

$$
\Rightarrow \phi(x) \phi(y) \in \operatorname{Im} \phi
$$

$$
\phi\left(I_{R}\right)=I_{T} \Rightarrow I_{T} \in I_{m} \phi
$$

Definition $\phi: R \rightarrow T$ a homomorphism (of rings)
$\operatorname{Ken} \phi=\{x \in R \mid \phi(x)=0<\} \quad$ aditicientity
Remark : $\operatorname{kew} \phi=\left\{0_{R}\right\} \Leftrightarrow \sigma$ injostive ( $\Rightarrow R$ isomonolise to $I_{m} \phi$ ) $Q_{f}:$ Is $\operatorname{Ken} \phi \subset R$ a subring?
Observation : $I_{R} \in \operatorname{Ken} \phi \Rightarrow \phi\left(I_{R}\right)=O_{T} \Rightarrow O_{T}=I_{T}$
$\Rightarrow T$ trivia $\longleftarrow$ Very restrictive
It its' not a subring in general, what is it.
Observations
$\varnothing: R \rightarrow T$ homomorphisin of group under addition
$\Rightarrow K \omega \varnothing \subset R$ is a subgroup under +
Let $x \in K e w, y \in R$ not necessaidy in Ken $\phi$
$\phi(x y)=\phi(x) \phi(y)=O_{T} \phi(y)=0_{T} \Rightarrow x y \in \operatorname{Ker} \phi$
$\phi(y x)=\phi(y) \phi(x)=\phi(y) O_{T}=0_{T} \Rightarrow y x \in \operatorname{Ken} \phi$

Condusion Kor $\varnothing \subset R$ is closed under $G \neq \neq$ and right multiplication by all of $R$.
Defiaction Let $t$ be a ring. An ideal of $R$ is a subset $I \subset R$ such that

1 I is a subgroup ander +
2/ $x \in I, r \in R \Rightarrow r x, x r \in I$
Remark Ken $\mathcal{K} \subset \mathbb{R}$ is ideal.
Let ICR be an ideal.

$$
R / I=\{x+I \mid x \in R\}=67 t \text { cosets under }+
$$ of $I$ is $R$.

Theorem The binary operations

$$
\begin{array}{rlrl}
R / I \times R / I & \rightarrow R / I & R / I \times R / I & \rightarrow R / I \\
(x+I, y+I) & \rightarrow(x+y)+I & (x+I, y+I) & \rightarrow R
\end{array}
$$

are well-detived and give $R / I$ the structure of $a$ quotient ring
ring
Proof (On thine)
$(R,+)$ Abelian $\Rightarrow(I,+)$ is a normal subgroup of $(R,+)$
$\Rightarrow$ addition on $R / I$ well ditivad

Clain :

$$
\begin{aligned}
& x_{1}+I=x_{2}+I \\
& y_{1}+I=y_{2}+I
\end{aligned} \quad \Rightarrow \quad x_{1} y_{1}+I=x_{2} y_{2}+I
$$

Subproo4

$$
\begin{aligned}
& x_{1}+I=x_{2}+I \Rightarrow x_{1}-x_{2}-y_{1}-y_{2} \in I \\
& y_{1}+I=y_{2}+I \\
& \Rightarrow\left(x_{1}-x_{2}\right) y_{1}-x_{2}\left(y_{1}-y_{2}\right) \in I \\
& \Rightarrow x_{1} y_{1}-x_{2} y_{2} \in I \Rightarrow x_{1} y_{1}+I=x_{2} y_{2}+I \\
& \Rightarrow x \text { on } R / I \text { well-drtined }
\end{aligned}
$$

The rest is an exercise. For example,

$$
O_{R / I}=O_{R}+I \text { and } l_{R / I}=I_{R}+I
$$

$1^{\text {st }}$ Isomouphisen Theorem (Fow Rings)
Let $\phi: R \rightarrow T$ be a ring homomorphusen the

$$
\begin{aligned}
\psi: & R / \operatorname{Ken} \phi
\end{aligned}>\operatorname{Im}_{m} \phi
$$

is a ving isomarphisin.
Proot From grops theny we kmon $\psi$ is an isomaphisin of addetive grrups.

$$
\psi((x+\operatorname{ken} \phi)(y+\operatorname{ten} \phi))=\psi((x y)+\operatorname{ten} \phi)
$$

$$
\begin{aligned}
& =\phi(x y)=\phi(x) \phi(y)=\psi(x+K \cos \phi) \psi(y+\operatorname{Ken} \phi) \\
& \psi\left(I_{R}+\operatorname{Kec} \phi\right)=\phi\left(I_{R}\right)=1_{T}
\end{aligned}
$$

