Math 1B: Calculus Spring 2020

Project 1.3: The Abel and Dirichlet Tests

Instructor: Alexander Paulin Date: March 29 2020

Whilst we have a large selection of series tests, there are still examples of infinite series that fall outside of their reach. In this project we'll look at two powerful new tests.

Abel's Test. Let $\{a_n\}$ and $\{b_n\}$ be two sequences. Suppose the following statements are true:

- $\sum_{n=1}^{\infty} a_n$ is convergent.
- $\{b_n\}$ is bounded and monotonic.

Then $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Use this test to prove the convergence of the following series:

1.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \cos(\frac{1}{n})$$

Carefully justify your answer.

2.

$$\sum_{n=2}^{\infty} (\frac{2^n + 3^n}{4^n + 5^n} \cdot \sum_{k=1}^{n} \frac{1}{k^2})$$

Carefully justify your answer.

Dirichlet's Test. Let $\{a_n\}$ and $\{b_n\}$ be two sequences. Suppose the following statements are true:

- The sequence $\{a_n\}$ is decreasing and $\lim_{n\to\infty} a_n = 0$
- The sequence of partial sums of $\{b_n\}$ is bounded.

Then $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

3. Show that Dirichlet's Test implies the Alternating Series Test. Carefully justify your answer.

4. Show the following series converges

$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n}.$$

Hint: To simplify the partial sum $\sum_{n=1}^{N} \cos(n)$, try multiplying by $2\sin(\frac{1}{2})$ and using the formula $2\sin(b)\cos(a) = \sin(a+b) - \sin(a-b)$.

Bonus Problem: Is it absolutely or conditionally convergent?