Factorization in Polynomial Rings
Recall
F a Fidd $\Rightarrow F[x]$ UFD

$$
\begin{aligned}
& F[x]^{+}=F^{+}=F \backslash\left\{0_{F}\right\} \\
& F(x), g(x) \neq 0_{F[x]} \Rightarrow \operatorname{deg}(F(x) g(x))=\operatorname{deg}(F(x))+\operatorname{deg}(g(x))
\end{aligned}
$$

Definction
$7 \in F\{x\} \backslash\left\{O_{F\{x]}\right\}$ movic it leading corfficient is I_{F}
Obsevration
If $\left.f(x), g(x) \in F[x] \backslash\left\{O_{F C z}\right\}\right\}$ movic then $f(x)$ and $g(x)$ associated $\Leftrightarrow f(x)=g(x)$
say $f(x)$ hiseo
Proposition $\operatorname{deg}(f(x))=1 \Rightarrow f(x)$ iweduaible in $f[x]$
Proot $f(x)=g(x) h(x) \Rightarrow \operatorname{deg}(g(x))=1, \operatorname{deg}(h(x))=0$
$\Rightarrow h(x) \in F[x]^{*} \Rightarrow 7(x)$ iweducible
Theovem Given $f(x) \in F\{x\} \backslash\left\{0_{F C x\}}\right\}, \alpha \in F$

$$
f(\alpha)^{L}=\left.0_{F} \Leftrightarrow(x-\alpha)\right|_{7(x)} \text { in } F[x]
$$

Proof

$$
\Leftrightarrow f(x)=g(x)(x-\alpha) \Rightarrow f(\alpha)=g(\alpha)(\alpha-\alpha)=0_{F}
$$

\Leftrightarrow Assuane $(x-\alpha) / f(x)$

$$
\begin{aligned}
& \Rightarrow f(x)=q(x)(x-\alpha)+r \text { deque } 0 \\
& \Rightarrow f(x)=q(x)(x-\alpha)+r=r \neq 0_{F}
\end{aligned}
$$

Theorem If $\operatorname{deg}(f(x))=n$ and $\alpha_{1, \ldots}, \alpha_{k} \in F$ ave distinct roots then $\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{k}\right) \mid f(x)$. Hence $f(x)$ has at most n diftind roots is F.

Prat

$$
\begin{aligned}
& \alpha_{i} \neq \alpha_{j} \Rightarrow x-\alpha_{i} \neq x-\alpha_{j} \Rightarrow x-\alpha_{i}, x-\alpha_{j} \text { are } \\
& \text { (} i \neq j \text {) } \\
& f\left(\alpha_{i}\right)=o_{F} \Rightarrow\left(x-\alpha_{i}\right) \mid f(x) \\
& F\{x\} \text { a UFD } \Rightarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right) \mid f(x)
\end{aligned}
$$

Theorem
Every non-coxstat $f(x) \in F(x) \Longleftrightarrow$ Every iweduaibl has a root in F

Proof
(\Rightarrow)
Let $f(x)$ be ineducible in $F[x] \Rightarrow \operatorname{deg}(f(x)) \geqslant 1$
$\Rightarrow 3 \alpha \in F$ such that $f(\alpha)=O_{F} \Rightarrow f(x)=(x-\alpha) g(x)$

$$
\Rightarrow g(x) \in(F[x])^{*} \Rightarrow d \lg (f(x))=1
$$

(↔) $\operatorname{deg}(f(x)) \geqslant 1 \Rightarrow f(x) \neq 0 F(x)$ and $f(x) \notin F[x]$ -

$$
\begin{aligned}
& F(x) \text { a UFD } \Rightarrow f(x)=a \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \\
& \Rightarrow F\left(\alpha_{1}\right)=O_{F}
\end{aligned}
$$

Definction
F is aly ehraically dosed \Leftrightarrow Every nox-constant $f(x) \in F(x)$ has a root in F

Fundamentel Thervem of Algehra
\mathbb{C} is algebraically dosed
Proot Howd. Most straigattonnand proot uses complex analysis
Remonts
$\mathbb{Q}, \mathbb{R}, \mathbb{Z} / P \mathbb{Z}$ are not algamaically dosed $\begin{array}{ccc}\uparrow & \uparrow & \uparrow \\ x^{2}+1 & x^{2}+1 & x^{p}-x+1\end{array} \longleftrightarrow \begin{aligned} & \text { None hove a noot in } \\ & \text { coetficieist field }\end{aligned}$

Thewem $f(x) \in \mathbb{R}[x]$ iweducible $\Rightarrow d y(f(x))=1$ or 2
Proot
Assume $f(x)_{\mathbb{R}} \in \mathbb{R}[x]$ iweducith and $\operatorname{dy}(f(x))>2$

$$
\Rightarrow f(x)=a_{a}^{\mathbb{R}} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

factovization $\Gamma \mathbb{C}$
in $\mathbb{C}[x]$
$f(x) \in \mathbb{R}(x] \Rightarrow f(x)=a \prod_{i=1}^{n}\left(x-\bar{x}_{i} \prod_{\text {complex }}\right.$ conjugate
$\Rightarrow \alpha_{i} \in \mathbb{R}$ or $\alpha_{i} \in \mathbb{C} \backslash \mathbb{R}$ and $3 j \in\{1, \ldots, n\}$
such that $\overline{\alpha_{i}}=\alpha_{j} .\left(\Rightarrow \alpha_{i}, \alpha_{j}\right.$ complex conjugate pain)
$\left(x-\alpha_{i}\right)\left(x-\bar{\alpha}_{i}\right) \in \mathbb{R}[x] \Rightarrow f(x)$ product of Liriea and quadratic terms $\Rightarrow f(x)$ reducith. Contradiction

Q/ What about $\mathbb{Q}(x)$?
Let's first think about factorization in $\mathbb{Z}[x]$.
FTOA: \mathbb{Z} a U.F.D.
Definction Let R be a U.F.D.
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{R}[x]$ is primitive it
$\geqslant \operatorname{deg}(f(x)) \geqslant 1$
2/u|ai $\forall i \in\{0, \ldots, n\} \Rightarrow u \in R^{*}$
Example $3+6 x+7 x^{2} \in \mathbb{Z}[x]$
Gauss' Lemma Let R be a UF.D.
$f(x), g(x) \in \mathbb{R}(x)$ primitive $\Rightarrow f(x) g(x)$ primitive
Proof
$f(x), g(x)$ primitrun $\Rightarrow \operatorname{deg}(f(x)), \operatorname{deg}(g(x)) \geqslant 1 \Rightarrow \operatorname{dog}(f(x) g(x)) \geqslant 1$
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+\cdots+b_{m} x^{m}$
with $a_{n} \neq O_{R}, b_{m} \neq O_{R}$

$$
\Rightarrow f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{n+m} x^{n+m}
$$

where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}$
Assume $f(x) g(x)$ not primitive. R a U.F.D. $\Rightarrow \exists \pi \in R$ irreducible such that $\pi \mid C_{k} \quad \forall k \in\{0, \ldots, a+m\}$ choose r, s minimal such that πX ar and $\pi / b s$

$$
\begin{aligned}
& c_{r+s}=a_{0} b_{r+s}+\ldots+a_{r+s} b_{0}
\end{aligned}
$$

$\pi \mid a_{i} \dot{i} \quad i<r$
$\pi \mid b_{j}$ i $j<s$
$\Rightarrow \pi\left|a_{v} b_{s} \Rightarrow \pi\right| a_{r}$ or $\pi \mid b_{s} \quad \underline{\text { Coutradidion }}$
$\Rightarrow f(x) g(x)$ primitive
Observation:
Let $F=\operatorname{Frac}(R), f(x) \in F(x), \operatorname{deg}(f(x)) \geqslant 1$ $\operatorname{deg}(f(x))=\operatorname{deg}\left(f_{0}(x)\right)$
$\Rightarrow f(x)=\frac{\alpha}{\beta} f_{0}(x)$ where $\frac{\alpha}{3} \in, F, f_{0} \in R[x]$ primitive unique up to a unit is $R[x]$.

Example

$$
\begin{aligned}
& f(x)=\frac{2}{3}+\frac{4}{3} x+2 x^{2} \in \mathbb{Q} C_{x} \\
& \Rightarrow 3 f(x)=2+4 x+6 x^{2}=2\left(1+2 x+3 x^{2}\right) \\
& \Rightarrow f(x)=\frac{2}{3}\left(1+2 x+3 x^{2}\right)
\end{aligned}
$$

Theorem Let R be a C.FD., $F=F$ race (R), $f(x) \in R[x] \subset F[x]$.
$f(x)$ ineducible in $R(x] \Rightarrow f(x)$ iweduaible in $F[x]$.
Proof Prove Contrapositive:
$f(x)$ reducible in $F[x] \Rightarrow f(x)$ reducible in $R[x]$
Let $f(x)=g(x) h(x), g(x), h(x) \in F(x)$, $\operatorname{deg}(g(x)), \operatorname{deg}(h(x)) \geqslant 1$

$$
R(x]^{*} \quad R[x]^{*}
$$

Let $\left.\begin{array}{rl}f(x) & =\alpha f_{0}(x) \\ g(x) & =\frac{a}{b} g_{0}(x)\end{array}\right\} \begin{array}{ll}f_{0}(x), g_{0}(x), & h_{0}(x) \in R(x)\end{array}$
$h(x)=\frac{c}{d} h_{0}(x) \int$ primitive
$\Rightarrow \quad \alpha f_{0}(x)=\frac{a c}{n d}\left(g_{0}(x) h_{0}(x)\right)$
Primitive by Gauss '
Lemma
$\Rightarrow f_{0}(x)=u g_{0}(x) h_{0}(x)$ where $u \in R^{*}$
$\Rightarrow f(x)=\alpha u g_{0}(x) h_{0}(x) \Rightarrow f(x)$ reducible in $R[x]$.

Waning:
$f(x)$ iweducible in $F[x]$ $\neq f(x)$ inducible in $R(x)$
For example $2 x+6=2(x+3)$
Covallany If $f(x) \in R(x)$ mimic and $\mu \in F$ a root in F, then $\mu \in R$.
Proof Let $\mu=\frac{a}{b}$, acth I_{F} an HCF of a and b.
$f\left(\frac{a}{b}\right)=0 \Rightarrow f(x)=\left(x-\frac{a}{b}\right) h(x), h(x) \in F[x]$
$x-\frac{a}{b}=\frac{1}{b}(b x-a)$ primitive in $R(x]$
By above proof $(b x-a) \mid f(x)$
$f(x)$ monic $\Rightarrow b \in R^{*} \Rightarrow \frac{a}{b}=\frac{a b^{-1}}{1} \Rightarrow \frac{a}{b} \in R$

Eisensteins Criterion
Let R be a U.F.D., $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$ $\operatorname{deg}(f(x)) \geqslant 1$
Assume $\exists \pi \in R$ inducible such that
$1 \pi a_{n}$
$2 \pi \mid a ; \quad \forall i \in\{0, \ldots, n-1\}$
$3 \quad \pi^{2} \mid a_{0}$
then $f(x)$ is iweducitle in $F[x]$
Proof
Assume 1,2/,3/ hold but $f(x)$ reducible in $F(x]$ $\Rightarrow f(x)$ reducible in $R(x)$ and $f(x)=g(x) h(x)$ with $g(x), h(x) \in R(x), \operatorname{deg}(g(x)), \operatorname{deg}(h(x)) \geqslant 1$

Let $g(x)=b_{0}+\cdots+b_{r} x^{r} \quad b_{r} \neq o_{R}, c_{s} \neq o_{n}$

$$
\begin{aligned}
h(x)=c_{0}+\ldots+c_{s} x^{s} \quad r+s=n, & r_{1} s \geqslant 1 \\
& r<n, s<n
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=b_{0} c_{0} \quad \text { WLo } c_{4} \\
& \pi^{2} X a_{0}, \pi\left|a_{0} \Rightarrow \pi\right| b_{0} \text { and } \pi X c_{0} \quad \pi \mid b_{j} \\
& \pi X a_{n} \Rightarrow \pi X b_{r} \text { and } \pi X c_{s}
\end{aligned}
$$

choose $i \in\{1, \ldots r]$ minimal such that $\pi X b_{i}$

$$
\begin{array}{r}
a_{i}=b_{i} c_{0}+b_{i-1} c_{1}+\cdots+b_{0} c_{i} \\
\Rightarrow b_{i} c_{0}=a_{i}-b_{i-1} c_{1}-\cdots-b_{0} c_{i} \\
\pi \text { duids } \pi \text { duids } \pi \text { durds }
\end{array}
$$

$$
\Rightarrow \pi \mid b_{1} c_{0}
$$

But $\pi X c_{0} \Rightarrow \pi / b_{i}$ Coutradiction.
$\Rightarrow f(x)$ iweduaible in $F[x]$.
Covollary In $\Phi[x]$ there are imeduaible polynomials of any degree.

Proot

$$
\mathbb{Z} \text { a } U F D . \quad \mathbb{Q}=F \operatorname{rac}(\mathbb{Z})
$$

Eisentteins criterion $\Rightarrow 2+2 x+\cdots+2 x^{n-1}+x$ is iwnducibl in $\mathbb{Q}[x] \quad \forall n \in \mathbb{N}$

