Principal Ideal Domains
Definition A ring R is a principal ideal domain it 1/ 2 is an integral domain $I \subset R$ ideal

2 Ever ideal of R is principal $\Rightarrow I=(a)$ for some $a \in I$

Proposition R Endidean domain $\Rightarrow R$ a.I.D.
R Endidean domain $\Rightarrow R$ an integral domain Let φ be a Eudidean Function on $R, I \subset R$ anidad.

$$
I=\left\{\sigma_{2}\right\} \Rightarrow I=\left(0_{e}\right)
$$

Assume $I \neq\left\{0_{k}\right\}$.

$$
\begin{aligned}
\varphi(m) & \leq \varphi(n) \\
& \forall n \in I \backslash\left\{0_{k}\right\}
\end{aligned}
$$

Choose m $m \backslash\left\{O_{R}\right\}$ such that $\varphi(\mathrm{m})$ is minimal.
Claim $I=(m)$.

$$
m \in I \Rightarrow(m) \subset I
$$

Assume $I \neq(m) \Rightarrow\} b \in I \backslash\left\{O_{k}\right\}$ such that $m \nless b$.
$\Rightarrow 3 q, r \in R$ such that $b=q m+r, r \neq O_{z}$ and $\varphi(r)<\varphi(m)$.
$b, m \in I \Rightarrow v=b-q m \in I$. Contradidtion by aninimaits of $\varphi(m)$. Hence $I=(m)$
field
Examples $\mathbb{Z}, F[x]$ are P.I.D.s

Definition Let R be an integral domain, I_{1}, I_{2}, \ldots a nested sequence of ideals:

$$
I_{1} \subset I_{2} \subset I_{3} \cdots
$$

We stay $\{I ;\}$ is stationary it $\} N \in \mathbb{N}$ such that

$$
I_{n}=I_{N} \quad \forall n \geqslant N .
$$ A commutative ring satistying this is called

Theoven K a P.I. $D \Rightarrow$ Every ascending Noetherian Mopeds is stationary
Proof (OutCui)
Ascending chain of ideals
$I_{1} \subset I_{2} \subset I_{3} \ldots \Rightarrow \bigcup_{i=1}^{\infty} I_{i}$ an ideal in R must be acted

$$
\mathcal{I} \text { a P.I.D. } \Rightarrow 3 m \in \bigcup_{i=1}^{\infty} I_{i} \text { such that }(m)=\bigcup_{i=1}^{\infty} I_{i}
$$

$\Rightarrow \exists N \in \mathbb{N}$ such that $m \in I_{N}$

$$
\Rightarrow(m) \subset I_{N} \subset \bigcup_{i=1}^{0} I_{i} \subset(m) \Rightarrow I_{n}=I_{N} \forall n \geqslant N
$$

Theorem R a P.I.D. \Rightarrow Every $a \neq O_{2}, a \notin R^{*}$ admits an irreducible factorization
Proof
Crucial Observations: (a) $\neq(b) \Leftrightarrow b \mid a$ and $a X_{b}$

$$
(a)=(b) \Leftrightarrow a=b u, u \in R^{*}
$$

Let $a \neq O_{R}$ and $a \notin R^{*}$.
Sty 1 : Show a has an irreducible factor. 世 $R^{R} R^{*}$
If a ineducible done. If not $a=b, a$,

$$
\Rightarrow \quad(a) \nsubseteq\left(a_{1}\right)
$$

If a_{1} inducible done. If not $a_{1}=b_{2} a_{2}$

$$
\Rightarrow \quad(a) \nsubseteq\left(a_{1}\right) \subseteq\left(a_{2}\right)
$$

If a_{2} inducible dove. If not repeat.
This process mast terminate with an imedncibl factor as every ascending choir of ideas is stationary.
Stop 2 Show a admits an inducible factorization. inducible
If a irreducible done. It not $a=p, c$,

$$
\Rightarrow \quad(a) \notin\left(c_{1}\right)
$$

iweducibh
If c_{1} irreducible dove. If not $c_{1}=p_{2} c_{2}$

$$
\Rightarrow \quad(a) \nsubseteq\left(c_{1}\right) \nsubseteq\left(c_{2}\right)
$$

Again this proas must terminate with an iwaduable c_{n}
$\Rightarrow a=p_{1} p_{2} \ldots p_{n} c_{n}$ an inducible factorization.
Definition Let R be an integral domain. We say $p \in R$ is prime if

$$
\begin{aligned}
& 1 P \neq O_{R} \\
& \text { / } P \notin R^{+} \\
& 3 / p l a b \Rightarrow \text { fla or } p l b \quad \forall a, b \in R
\end{aligned}
$$

Example
Endid's Lemma
$p \in \mathbb{Z}$ inducible $\Rightarrow p \in \mathbb{Z}$ prime Hen destination
Remand $p \in R$ prime $\leftrightarrow p \neq O_{R}$ and $(p) \subset R$
a prime ideal
Proposition p prime $\Rightarrow p$ iweducible.
Proof
Assume p reducible $\Rightarrow p=a b, a, b \notin R^{*}$

$$
\begin{aligned}
& b \notin R^{+} \Rightarrow p \times a \\
& a \notin R^{*} \Rightarrow p \times b
\end{aligned}
$$

Howerw plab. $\Rightarrow p$ not prime.
Thew If R is a P.I.D.
$p \in \mathbb{R}$ iweducible $\Leftrightarrow p \in \mathbb{R}$ prime
Proof
Assume $p \in R$ iweducibl $\Rightarrow P \neq O_{R}$ and $p \notin R^{+}$
Claim (P) is maximal. $-R$ must be a P.I.D.
$P \notin R^{*} \Rightarrow(P) \subset R$ is a proper ideal.
Assume $J \subset R$ is an ideal $(P) \subset J \subset R$.
R a P.I.D. $\Rightarrow J=(m)$ for some $m \in J$
$(p) \subset(m) \Rightarrow p=c m \Rightarrow c \in R^{*}$ or $m \in R^{+}$

$$
\left.\begin{array}{l}
c \in R^{*} \Rightarrow(p)=(m) \\
m \in R^{*} \Rightarrow(m)=R
\end{array}\right\} \Rightarrow(p) \subset R \text { maximal }
$$

$(p) \subset R$ maximal $\Rightarrow R /(p)$ Field $\Rightarrow R /(p)$ integral
$\Rightarrow(P) \subset R$ prime ideal
$P \neq O_{R} \Rightarrow P \in R$ prime
Theorem Let R be a ring. If
1/ R an integral domain
2 Every $a \neq O_{R}, a \notin R^{*}$ adinits an iweduciblu Factorization
actually equivalent to being $U_{x_{0}}$ big a

Proof
We need to prove that $3 / \Rightarrow$ uniqueness at
iweducible
Factorizations at c WLOG assume $n \leqslant m$ a_{1} irreducible $\Rightarrow a_{1}$ prime.

$$
a_{1}\left|b_{1} \ldots b_{m} \stackrel{\text { after reordering }}{\Rightarrow} a_{1}\right| b_{1}
$$

$a_{1}=b_{1} c_{1}$. a_{1} iweduaible, $b_{1} \notin R^{*} \Rightarrow c_{1} \in R^{*}$
$\Rightarrow a_{1}$ and b_{1} are associated
C.L.

$$
\Rightarrow \quad c_{1} a_{2} \ldots a_{n}=b_{2} \ldots b_{m}
$$

Repeat with a_{2} and b_{2}. after veorder
Repeat until we have
If $n<m$ we would eventrally have

$$
c_{1} \ldots c_{n}=b_{n+1} \ldots b_{m} \Rightarrow b_{n+1} \in R^{*}
$$

$$
\hat{R}^{*}
$$

Coutradiction. Hence $n=m$ and, a fter reardeing, a_{i} associated to $b_{\text {; }}$ for all ie $\{1, \ldots n\}$

Theoven R a P.I.D. $\Rightarrow R$ a U.F.D.
Proot
I/ R a P.I.D. $\Rightarrow R$ intepral domain
2 R a P.I.D. $\Rightarrow a \neq O_{R}, a \notin R^{*}$ admicts an iweducibl factorization
$3 R$ a P.I.D. $\Rightarrow P \in R$ iweducibl $\Leftrightarrow P \in R$ prime
Theasm $\mathbb{R}_{\text {a }}$ Euclidean domain $\Rightarrow R$ a UFD.
Proot
R a Endidean domain $\Rightarrow R$ a P.I.D. $\Rightarrow R$ a U.F.D.

