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Abstract. If πf is a cuspidal automorphic representation of GL2/Q associated to a mod-
ular form f , the local and global Langlands correspondences are compatible at all finite
places of Q. On the p-adic Coleman-Mazur eigencurve this principle can fail (away from
p) under one of two conditions: on a generically principal series component where mon-
odromy vanishes; or on a generically special component where the ratio of the Satake
parameters degenerates. We prove, under mild restrictive hypotheses, that such points
are the intersection of generically principal series and special components. This is a
geometric analogue of Ribet’s level raising and lowering theorems.

1. Introduction

Let πf be a cuspidal automorphic representation of GL2/Q associated to a cuspidal modular
form f . Let p be a prime number and fix Q̄, an algebraic closure of Q . To πf we may
naturally associate ρf , a 2-dimensional, p-adic potentially semi-stable representation of
GQ := Gal(Q̄/Q), naturally fitting into a compatible system. Each of these global objects
naturally decomposes into local data.

On the automorphic side, the restriction of πf to the finite adeles is the restricted tensor
product

πf = ⊗′πf,l
where πf,l is a smooth admissible irreducible representation of GL2(Ql), for l prime. On
the Galois side, for any prime l, ρf gives rise to a 2-dimensional Frobenius semisimple
Weil-Deligne representation (ρf,l, Nf ).

If π is the Tate normalised local Langlands correspondence then by work of Carayol
([6]), Saito ([23]), et al, local to global compatibility holds, i.e.

π(ρf,l, Nf ) ∼= πf,l.

In [22] we extend this result to families of finite slope overconvergent modular forms. More
precisely, for N a natural number coprime to p, let E be the cuspidal eigencurve (for the
full Hecke algebra) of tame level N . Let l be a prime not equal to p. By [22], to any
x ∈ E we may associate πx,l, a smooth admissible representation of GL2(Ql) and (ρx,l, Nx)
a 2-dimensional Frobenius semisimple Weil-Deligne representation. The central result of
[22] is:
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Theorem (Local to Global Compatibility). Away from a discrete subset X ⊂ E, local
to global compatibility holds, i.e. for x ∈ E \ X we have

π(ρx,l, Nx) ∼= πx,l.

In [22] it is also shown that on the irreducible locus of E , failure can only occur when
π(ρx,l, Nx) is one dimensional, something with cannot happen classically. In this paper we
address the geometric consequences of this failure.

Let l and p be two distinct rational primes. This will be the convention adopted through-
out the rest of the paper. Let S be a finite set of places of Q containing p, l and ∞. Let
F be a finite field of characteristic p and VF be a two dimensional F-vector space equipped
with a continuous, odd action of GQ,S . Let us, furthermore, assume that endF[GQ,S ]VF = F
and that VF is modular, associated to a cuspidal eigenform. If VF is absolutely irreducible
this last condition is automatically satisfied by Serre’s conjecture (now a theorem of Khare,
Wintenberger and Kisin). Let XVF denote the universal deformation space associated to
VF.

As explained in §5, there is a closed subspace E ⊂ XVF × Gm, the cuspidal eigencurve
lying over VF (see §6 of [15] for a more detailed Galois theoretic construction, or §2 of [5]
for a Hecke theoretic construction). As above, to any x ∈ E we may naturally associate
a 2-dimensional Frobenius semisimple Weil-Deligne representation (ρx,l, Nx). We remark
that the Hecke construction of E given in [5] involves glueing restricted Hecke Algebras,
i.e. those away from the level. Hence, strictly speaking, Cp-valued points on E correspond
to systems of eigenvalues associated to a finite slope overconvergent cuspidal eigenforms,
and not necessarily to eigenforms themselves. Hence, this eigencurve is subtly different
from the one introduced above. There is, of course, a natural morphism between the two
as explained in §5. We make the following conjecture:

Conjecture. Let x ∈ E be a point such that π(ρx,l, Nx) is one dimensional. Then there
exist irreducible components Z,Z ′ ⊂ E, generically special and principal series respectively,
such that x ∈ Z ∩ Z ′.

This is equivalent to a combination of the following geometric analogues of Ribet’s level
lowering and raising theorems:

Conjecture (Level Lowering). Let Z ⊂ E be a generically special (at l) component such
that there exists x ∈ Z such that Nx = 0, then there exists Z ′ ⊂ E, a generically principal
series irreducible component, such that x ∈ Z ′.
Conjecture (Level Raising). Let Z ⊂ E be a generically principal series (at l) com-
ponent such that there exists x ∈ Z such that π(ρx,l, Nx) is one dimensional. Then there
exists Z ′ ⊂ E, a generically special irreducible component, such that x ∈ Z ′.
We prove these conjectures under mild technical restrictions on VF and x.

Let Vx be the 2-dimensional p-adic representation associated to x. Let V p
x denote its

restriction to a decomposition group at p. We say that x ∈ E satisfies (?) if
(1) Vx and V p

x are absolutely irreducible.
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(2) The generalised Hodge-Tate weights of V p
x are 0 and k /∈ −N ∪ {0}

Our main result is the following:

Theorem A. Let p > 2. Let S be a finite set of places of Q such that {l, p,∞} ⊂ S and
S \ {l, p,∞} 6= ∅. Let VF be a 2-dimensional, mod p, modular representation of GQ,S such
that VF|GQ(ζp)

is absolutely irreducible. Furthermore, assume that V p
F is p-distinguished and

not a twist of an extension of the cyclotomic by trivial characters. Let E denote the cuspidal
eigencurve lying over VF. Let x ∈ E such that

(1) Vx satisfies (?).
(2) π(ρx,l, Nx) is one dimensional.

Then there exist irreducible components Z,Z ′ ⊂ E generically special and principal series
respectively such that x ∈ Z ∩ Z ′.

We remark that S must contain an auxillary place purely for technical reasons (see
proposition 14).

Let us outline the basic strategy of the proof. In [15] it is proven that for any x ∈ E ,
V p
x satisfies the property of being trianguline (see §3.4). Using this Kisin ([15]) defines

the closed rigid analytic subspace space Xfs ⊂ XVF × Gm using purely Galois theoretic
techniques. One should think of Xfs as a Galois theoretic avatar of E . In particular
there is a canonical inclusion E ⊂ Xfs. In [15] it was conjectured that this inclusion is
actually an equality, giving a purely Galois theoretic construction of E . By recent work of
Emerton ([12]) this has been shown to be true after imposing the above restrictions on VF.
Philosophically speaking this is an R = T theorem.

This allows us to study the local geometry of E using Xfs. The benefit of such an
approach is that the local geometry of Xfs can be understood using Galois deformation
theory (Theorem 6 of §4.2). In particular we may apply the theory of trianguline deforma-
tions as developed in [1] to determine the local geometry of Xfs. Our strategy is to first
prove the level raising and lowering conjectures for Xfs using Galois deformation theory,
then using Emerton’s result, deduce them for E .

We remark that this strategy is reminiscent of that employed by Gee in [13], where level
raising ard lowering results are proven using deformation theory and then transported to
the realm of automorphic representations using an R = T theorem. We should also remark
that certain cases of the level raising conjecture have already been established by work of
Newton ([21]), in the unramified case by directly generalising the methods of Diamond and
Taylor in the classical case. Our approach is fundamentally different.

The techniques developed in this paper are well suited to studying the local geometry
of Galois theoretic eigenvarieties in the higher rank case, as being developed by Pottharst.
As R = T theorems improve it seems reasonable to hope that these techniques will provide
a means of understanding the local geometry of higher rank automorphic eigenvarieties.

We also remark that the techniques developed in this paper may be used to prove similar
geometric level raising and lowering results for the full space of p-adic modular forms.
More precisely, one may prove a natural analogue of theorem A for the rigid analytic space
associated to the big Hecke algebra acting on the the full space of cuspidal p-adic modular
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forms, under mild restrictions on VF. The strategy in this case would be the same, first
proving it for the universal deformation space associated to VF and then transferring it the
setting of p-adic modular forms using results of Boeckle ([4]). In a sense, this situation is
easier because one does not need to impose any condition on the local deformations at p.

Arrangement of the Paper. In §2 we review the basic theory of deformation of repre-
sentations of profinite groups. In §3.1 we study local deformations away from p, refining
results of Gee ([13]) and Kisin ([17]). In §3.2 we review the theory of trianguline deforma-
tion theory developed in [1]. In particular we show that under favourable circumstances
Kisin’s h-deformation functor (see §8 of [15]) and the trianguline defomation functor are
naturally isomorphic. This allows us to transport results from [1] to the setting of [15]. In
§4.1 we prove a characteristic zero analogue of Kisin’s results on presenting global defor-
mation rings over local deformations in positive characteristic ([16]). Finally in §4.2 we
bring these ideas together to prove the level lowering and raising conjectures for Xfs. In
§5 we review the basic theory of the eigencurve and prove level raising and lowering in this
context invoking Emerton’s R = T result.

Acknowledgments. I would like to thank Kevin Buzzard and Mathew Emerton for the
numerous and helpful conversations I have had with them.

2. Deformations of Profinite Groups

In this section we review the basic concepts of deformations of finite dimensional repre-
sentations of profinite groups. We also recall some of the techniques needed to study the
local geometry of the universal deformation space of a finite characteristic representation
in the spirit of [17] .

Let p be a rational prime and F a finite field of characteristic p. Let G be a profinite
group and VF be a finite dimensional F-vector space equipped with a continuous action of
G. We write dimF(VF) = d. In practice G will always be a Galois group of a number field
or a local field.

Let W (F) be the Witt vectors over F and ARW (F) be the category of finite local, Artinian
W (F)-algebras with residue field F. For A ∈ ob(ARW (F)) we define a deformation of VF
to A to be a finite free A-module, VA, equipped with a continuous A-linear action of G
and an isomorphism VA ⊗A F ∼= VF. An isomorphism between two such deformations is a
A[G]-module isomorphism where the induced automorphism of VF is the identity.

Using this we define the functor DVF , which assigns to any A ∈ ob(ARW (F)) the set of
isomorphism classes of deformations of VF to A. We remark that this functor is naturally
isomorphic to the usual deformation functor defined in terms of strict equivalence classes
of liftings of VF.

Let βF be a basis for VF. If A ∈ ob(ARW (F)) and VA is a deformation of VF, then a
framing of VA with respect to βF is a choice of A-basis lifting βF. We will be interested
in deformations with multiple framings. Let Σ be a finite index set such that for every
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v ∈ Σ we have a fixed basis βv ⊂ VF. We define the functor D�
VF

, which assigns to every
A ∈ ob(ARW (F)) the set of isomorphism classes of deformations of VF to A together with a
framing of βv for each v ∈ Σ. There is a forgetful morphism of functors D�

VF
→ DVF . It is

clear that this morphism is formally smooth by construction.

From now on let us make the technical restriction that Hom(G,Fp) is a finite dimen-
sional Fp-vector space. We then have the crucial result originally due to Mazur ([20]) and
extended by Kisin in [17]:

Proposition 1. (1) D�
VF

is pro-representable by a complete local Noetherian W (F)-
algebra R�

VF
called the universal framed deformation ring.

(2) If EndF[G]VF = F then DVF is pro-represented by a complete local W (F)-algebra RVF
called the universal deformation ring.

The primary motivation for introducing the concept of a framed deformation is to ensure
representability under any circumstances.

Let F[ε] = F[X]/X2 and adVF denote the dual numbers and the adjoint representation
respectively. The following well known lemma ([20], [17]) expresses the relationship be-
tween the tangent spaces of these two functors.

Lemma 1. (1) There is a canonical isomorphism of finite dimensional F-vector spaces:

DVF(F[ε]) ∼= H1(G, adVF).

(2) D�
VF

(F[ε]) is a finite dimensional F-vector space satisfying:

dimFD�
VF(F[ε]) = dimFDVF(F[ε] + |Σ|d2 − dimF(adVF)G.

(3) DVF (and thus D�
VF

) is formally smooth over W (F) if and only if H2(G, adVF) = 0.

Frequently the theory of deformations of finite characteristic representation of profinite
groups is set up over some auxiliary coefficient-ring O. Recall that this means that O is a
complete local noetherian algebra with residue field F. Note that such a ring is canonically
a W (F)-alebgra. All of the above theory can be set up in this more restricted setting and all
above results hold. In particular the universal framed deformation in the case of O-algebra
framed deformations is given by R�

VF
⊗̂W (F)O. In this sense, our setup is the most general.

Let E/Qp be a finite extension and ARE be the category of local, Artinian E-alegbras
with residue field E. Similarly let VE be a finite dimensional E-vector space equipped with
a continuous E-linear action of G. We define the deformation functor, DVE , on ARE in
exactly the same way as above. Similarly if Σ is a finite index set and βv ⊂ VE is a basis
for each v ∈ Σ, we define the framed deformation functor D�

VE
in exactly the same way as

above. All of the above results carry over to this setting replacing F by E.

There is an elegant geometric interpretation linking deformations from characteristic p
and characteristic zero originally developed in §2.3 of [17] and §9 of [15].
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Keeping the above notation, let X�
VF

be the generic fibre of the formal scheme Spf(R�
VF

)
as explained in [11]. X�

VF
is a separated rigid space over W (F)[1/p]. By lemma 7.1.9

of [11] the points of X�
VF

are in natural bijection with the maximal spectra of R�
VF

[1/p].
Furthermore, if x ∈ X�

VF
corresponds to the maximal ideal m ⊂ R�

VF
[1/p] then there is a

canonical isomorphism of complete local noetherian rings

ÔX�
VF
,x
∼= ̂R�

VF
[1/p]m.

In particular they must have the same residue field, which is automatically a finite
extension E/Qp. The canonical morphism R�

VF
→ ̂R�

VF
[1/p]m composed with reduction

modulo the maximal ideal induces a continuous representation of G on a finite dimensional
E-vector space VE . Furthermore, VE comes equipped with a choice of basis for each v ∈ Σ.
We can now apply the above deformation theoretic techniques to VE to give the universal
framed deformation ring R�

VE
. By lemma 2.3.2, lemma 2.3.3 and proposition 2.3.5 of [17]

we know that

R�
VE
∼= ̂R�

VF
[1/p]m.

Hence we may study the infinitesimal geomtry of X�
VF

by using deformation theoretic tech-
niques.

If EndF[G]VF = F then DVF is pro-representable. Hence there exists an associated uni-
versal deformation space XVF . All of the above observations remain true in this situation
replacing all framed deformation functors with their unframed counterparts.

3. Local Deformations

3.1. Local Deformations away from p. Our eventual aim is to study deformations of
global Galois groups on p-adic vector spaces with prescribed behaviour at some prime l
not equal to p. With this in mind we begin by studying the structure of local deformation
spaces associated to representations of l-adic Galois groups acting on finite dimensional
vector spaces over a finite field F of characteristic p where l 6= p. Such deformation spaces
were extensively studied in §2 of [13], adapting the methods developed in §3 of [18].

3.1.1. Local Level Lowering Deformations. We wish to study the part of the local defor-
mation space on which monodromy vanishes. This is the geometric analogue of studying
the potentially crystalline locus of the universal deformation space when l = p. This is
a natural geometric analogue of classical level lowering, albeit more refined as it is more
general than being unramified.

Let K/Ql be a finite extension with residue field of cardinality lm. Fix an algebraic closure
K̄ and let GK be the absolute Galois group, together with its natural profinite topology.
By local class field theory we know that GK satisfies the p-finiteness condition of §2. Let
VF be a d-dimensional F-vector space equipped with a basis βF and a continuous F-linear
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action of GK . Let R�
VF

be the complete local Noetherian W (F)-algebra pro-representing
D�
VF

(with one framing) . Let X�
VF

denote the universal deformation space.

To x ∈ X�
VF

with residue field E/Qp we may naturally associate a d-dimensional E-vector
space Vx, equipped with a fixed basis and a continuous E-linear action of GK .

Let IK ⊂ WK be the inertia subgroup and Weil group respectively. Fix Φ ∈ WK , a lift
of (arithmetic) Frobenius. Let ||.|| : WK → Q∗ be the unramified character which sends Φ
to lm.

A well known theorem of Grothendieck ([24]) states that there is a finite extension of
L/K such that Vx restricted to IL is unipotent. This allows us to associate to Vx, a d-
dimensional Weil-Deligne representation of WK over E. Such an object is a triple (∆, ρ0, N)
where ∆ is a d-dimensional E-vector space; ρ0 : WK → AutE(∆) is a representation whose
kernel contains an open subgroup of IK and N ∈ AutE(∆) is a nilpotent endomorphism
satisfying

ρ0(σ)N = ||σ||Nρ0(σ) ∀σ ∈WK .

N is the monodromy operator associated to Vx . It is a measure of how much the initial
representation of GK fails to be continuous for the discrete topology on Vx. In particular,
if N = 0 then (∆, ρ0) is isomorphic to Vx as a WK representation. There is a natural
concept of a Weil-Deligne representation over an arbitrary Qp-algebra. There is also a
natural extension of Grothendieck’s result in the following sense:

As above let F be a finite field of characteristic p. Let us denote by ÂRW (F), the category of

complete local Noetherian W (F)-algebras with residue field F. Let Ao ∈ ob(ÂRW (F)) and
VAo be a finite free Ao-module of rank d together with an Ao-basis βAo and a continuous
Ao-linear action of GK . Write A = Ao[1/p]. VA := VAo ⊗A naturally comes equipped with
a continuous A-linear action of GK and a canonical A-basis βA, lifting βAo . If we denote
the generic fibre of Spf(Ao) by X then as above, Specmax(A) is in natural bijection with
X. We have the following mild generalization of Grothendieck’s result:

Proposition 2. To VA we may naturally associate a Weil-Deligne representation over A
with the property that specializing to x ∈ Specmax(A) recovers the classical construction.

Proof. By proposition 19 of [22] we know the result is true for affinoid alegbras. We may
admissibly cover X by affinoids. Glueing each of these Weil-Deligne representations gives
the desired Weil-Deligne representation over A. �

We write NVA for the monodromy operator of this Weil-Deligne representation over A.
Because we have a fixed A-basis βA we have the canonical inclusion NVA ∈ Md(A). Fur-
thermore, it is true by construction that, NVA ∈ Md(Ao). Let I ⊂ Ao denote the ideal
generated by the entries of NVA . We write AN=0

o = Ao/I and let VAN=0
o

= VAo ⊗ AN=0
o

together with its natural GK-action and canonical AN=0
o -basis. We should observe that

it is perfectly possible that AN=0
o is trivial. By construction the induced action of IK on

VAN=0
o

factors through a finite quotient.
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Now set Ao = R�
VF

. The above construction gives a closed subspace X
�,N=0
VF

⊂ X�
VF

.

X
�,N=0
VF

is the generic fibre of Spf(R�,N=0
VF

) and by construction, x ∈ X
�,N=0
VF

if and only
if the monodromy operator associated to Vx is trivial.

Observe that the Weil-Deligne representation carried by X
�,N=0
VF

must factor through a
finite quotient of IK . Hence there exists a finite extension L/K such that this Weil-Deligne
representation factors through the finite inertia group IL/K . This implies that the action
of inertia on V

R�,N=0
VF

must factor through IL/K . We also deduce that the action of inertia

on VF must factor through IL/K .

We define the functor D�,N=0
VF

which assigns to every A ∈ ob(ARW (F)) isomorphism classes

of framed deformations of VF over A, whose restriction to IL factors though IL/K . D�,N=0
VF

is a subfunctor of D�
VF

.

Proposition 3. D�
VF,N=0 is pro-represented by R�,N=0

VF
.

Proof. Let A ∈ ob(ARW (F)) and let VA be a framed deformation of VF. By the universal
property of R�

VF
we know that this framed deformation must be induced by a local morphism

φ : R�
VF
→ A. Let Nuniv ∈ Md(R�

VF
) be the universal monodromy operator. Clearly the

monodromy operator NVA ∈ Md(A) is the image of Nuniv under φ. By construction, VA
factors through IL/K if and only if NVA = 0. Hence the ideal generated by the entries of
Nuniv is in the kernel of φ if and only if NVA = 0. The result follows immediately. �

There is a more natural interpretation of this functor as follows:

Let IL be the inertia subgroup of L. Let Gun,L := GK/IL. It is naturally an extension of
Ẑ by the finite group IL/K .

Observe that VF naturally carries an action of Gun,L. Let A ∈ ob(ARW (F)). If VA
framed deformation VF, then its restriction to IK factor through IL/K if and only if (as a
GK representation) it factors through the quotient Gun,L.

Let us define the functor D�
VF,un,L

, which assigns to A ∈ ob(ARW (F)) isomorphism classes
of framed deformations of VF (as a Gun,L representation) over A. By construction this func-
tor is isomorphic to D�

VF,N=0. This reinterpretation is useful because it is of the form studied
in §2 setting G = Gun,L. In particular we observe that because Gun,L is a quotient of GK
it satisfies the p-finiteness condition. Hence we may study the local geometry of X

�,N=0
VF

using deformation theoretic techniques.

We now prove the main result of this section, which is a refinement of theorem 2.0.6
of [13].

Theorem 1. If X
�,N=0
VF

is non-empty then it is the union of formally smooth components
each of dimension d2.
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Proof. Assume that X
�,N=0
VF

is non-empty. Let x ∈ X
�,N=0
VF

have residue field E/Qp. Let Vx
be the associated representation of GK . By construction we know it factors through Gun,L.
Let D�,N=0

Vx
denote the functor which assigns to every A ∈ ob(ARE) the set of isomorphism

classes framed deformations of Vx (as a Gun,L representation) over A. D�,N=0
Vx

is pro-
represented by the complete local ring at x. Hence we just need to show that D�,N=0

Vx
is

unobstructed and has tangent space of dimension d2.
The obstruction to D�,N=0

Vx
being smooth over is in H2(Gun,L, adVx). Observe that there

is a short exact sequence

0→ IL/K → Gun,L → Ẑ→ 0.

Where we have fixed an isomorphism GK/IK ∼= Ẑ.
A finite group acting on a vector space over as characteristic zero field has trivial co-

homology in positive degree. The higher inflation-restriction sequence coming from the
Hoschild-Serre spectral sequence, tells us that

H2(Gun,L, adVx) ∼= H2(Ẑ, (adVx)IL/K ).
This latter groups is always trival, hence we deduce that the functor is unobstructed thus

X
�,N=0
VF

is smooth at x. By lemma 1 we deduce that the dimension of the irreducible com-
ponent containing x is therefore equal to dimE(H1(Gun,L, adVx)) + d2− dimE((adVx)GK ).
The Hoschild-Serre spectral sequence again tells us that

H1(Gun,L, adVx) ∼= H1(Ẑ, (adVx)IL/K ).

It is well known that this latter space is equal to H0(Ẑ, (adVx)IL/K ). However, this latter
space is equal to (adVx)GK because x ∈ X

�,N=0
VF

. This completes the proof. �

Theorem 2. If L/K is tamely ramified then R�,N=0
VF

is formally smooth over W (F) of
relative dimension d2.

Proof. By the proof of theorem 1 we just need to show that the deformation functorD�
VF,N=0

is unobstructed in this case. We know that |IL/K | = e(L/K) is coprime to p. A standard
result from the cohomology of finite groups tells us that the positive degree cohomology
must be annihilated by e(L/K). Because adVF is a vector space over Fp we deduce that
Hn(IL/K , adVF) = 0 for n > 0. Hence we may repeat the above argument to deduce that
H2(Gun,L, adVF) = 0. The result follows. �

We do not know if this result remains true in the event of L/K being wild.

3.1.2. Local Raising Lowering Deformations. As remarked in the introduction we will ul-
timately be concerned with 2-dimensional p-adic global Galois representations whose re-
striction to a decomposition group at l corresponds to a one dimensional representation
under π, the local Langlands correspondence.
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Recall that if VE is a 2-dimensional E-vector space, equipped with a continuous E-linear
action of GK then under π, the associated representation of GL2(K) is one dimensional if
and only if VE is a direct sum of two characters, one of which is a twist of the other by
the p-adic cyclotomic character χ. The semi-simple mod p representation associated to VE
must therefore be the direct sum of two characters, one of which is a twist of the other by
the mod p cyclotomic character χ̄.

Let VF be a 2-dimensional F-vector space, equipped with a continuous representation
of GK and a choice of basis βF. Let λ : GK → F∗ be a continuous character. We define
VF(λ) := VF ⊗F λ, the twist of VF by λ.

Proposition 4. The functors D�
VF

and D�
VF(λ) are isomorphic.

Proof. Let λ̃ : GK →W (F)∗ be the Teichmuiller lift of λ. Let A ∈ ob(ARW (F)). We denote
by λ̃A the canonical A∗-valued character induced by composition of λ̃ with the canonical
inclusion W (F) ⊂ A.

Let VA be a deformation of VF over A. By construction VA ⊗A λ̃A is a deformation of
VF(λ) over A.

Conversely if VA is a deformation of VF(λ), then VA ⊗A λ̃−1
A is a deformation of VF over

A.
This establishes a bijection between DVF(A) and DVF(λ)(A). Given A,B ∈ ob(ARW (F))

and a morphism A → B, we have λ̃A ⊗A B ∼= λ̃B. Hence we deduce that this gives a
natural isomorphism DVF

∼= DVF(λ).
Let VA be a deformation of VF over A, with a fixed A-basis βA lifting βF. Then the image

of βA under the natural morphism VA → VA ⊗A λ̃A gives an A-basis of VA ⊗A λ̃A. This
gives rise to the natural isomorphism of the framed deformation functors D�

VF
∼= D�

VF(λ) �

Let VF be a 2-dimensional F-vector space, equipped with a continuous representation of
GK and a choice of basis βF. Furthermore assume that

(1) VF(χ̄−1)GK 6= {0}
(2) det(VF) = χ̄.

These are precisely the conditions imposed in §2.6 of [17]. In particular we have the the
following result of Kisin:

Proposition 5. There is a closed subspace of X
�,χ,sp
VF

⊂ X�
VF

with the following two prop-
erties:

(1) X
�,χ,sp
VF

is smooth of dimension of 3.

(2) Let x ∈ X�
VF

, have residue field E/Qp. Then x ∈ X
�,χ,sp
VF

if and only if Vx, the
representation associated to x, is an extension of E by E(χ).

Proof. This is proposition 2.6.6 from [17]. �

Note that the representations on X
�,χ,sp
VF

all have fixed determinant χ. We wish to remove
this restriction.
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Let us define the subspace X
�,sp
VF
⊂ X�

VF
by demanding that x ∈ X

�,sp
VF

if and only if the
associated representation of GL2(K) under the local Langlands correspondence occurs as a
subquotient of a reducible principal series. More concretely, let x ∈ X�

VF
have residue field

E/Qp. Then x ∈ X
�,sp
VF

if and only if Vx is a twist of an extension of E by E(χ). Clearly

X
�,χ,sp
VF

⊂ X
�,sp
VF

.

Theorem 3. X
�,sp
VF

is formally smooth of dimension 4.

Proof. By local Tate-Duality the universal deformation ring of the trivial representation
of GK on a one dimensional F-vector space has universal deformation ring isomorphic to
the Iwasawa algebra over W (F). In particular the associated deformation space, which we
denote by X, is smooth of dimension 1.

If x ∈ X
�,sp
VF

then Vx is a twist of a unique representation occuring in X
�,χ,sp
VF

by a unique
character which is residually trivial. We deduce that

X
�,sp
VF
∼= X× X

�,χ,sp
VF

.

This in conjunction with proposition 5 yields the result. �

We should remark that by proposition 4 this result remains true after twisting VF be a
character. In particular, given any VF such that X

�,sp
VF

is non-empty, we know that it is
formally smooth of dimension 4.

3.2. Local Deformations at p. In this section we review the theory of 2-dimensional
trianguline deformation theory and recast Kisin’s h-deformation functor in this language.

Let Bcris and BdR denote Fontaine’s crystalline and de Rham period rings (for an ex-
cellent survey of their construction see [3]). Recall that Bcris is a topological Qp-algebra
equipped with a continuous action of GQp and a continuous frobenius operator ϕ, which
commutes with the Galois action. Similarly, BdR is a topological Qp-algebra, which comes
with a continuous action of GQp and a separated, exhaustive decreasing filtration. Bcris
is constructed from B+

cris ⊂ B+
dR = Fil0(BdR) by inverting the p-adic period t ∈ B+

cris.
Bcris naturally comes equipped with a separated, exhaustive decreasing filtration coming
from the natural embedding into BdR. If V is a finite dimensional Qp-vector space with a
continuous Qp-linear action GQp we define the functors D+

cris, Dcris, DdR according to the
usual recipe of Fontaine. For example

D+
cris(V ) := (B+

cris ⊗Qp V )GQp ,

where GQp acts diagonally.

Let E/Qp be a finite extension. Let VE be a finite dimensional E-vector space equipped
with a continuous E-linear action of GQp . Following [15] we assume that VE has a non-
trivial cristalline period, i.e. there exists λ ∈ E∗ such that there is a non-zero vector
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vh ∈ D+
cris(VE)ϕ=λ

Note that we are taking dual conventions to [15], where the equivalent property of the dual
representation is considered. To clarify the link, if we denote by V ∗E the E-dual of VE then
the existence of vh is equivalent to a non-zero GQp-equivariant E-linear morphism

h : V ∗E → (B+
cris ⊗Qp E)ϕ=λ.

By theorem 6.3 of [15], if f is a finite slope, overconvergent, cuspidal, p-adic eigenform
defined over E, then the local representation attached to f at p satisfies this condition where
λ = ap(f), and ap(f) is the eigenvalue of the Up operator. Again note that we are implicitly
dualising the global representation associated to f in [15]. This is the fundamental reason
for introducing this somewhat technical looking definition. A more conceptual approach
using Fontaine’s theory of (ϕ,Γ)-modules was introduced by Colmez ([9]), where, in the two
dimensional case, he calls such representations (up to twist) trianguline. This theory has
been extensively developed both by Colmez, in the two dimensional case, and by Bellaiche
and Chenevier in higher dimensions ([1]). We now review this approach.

3.3. (ϕ,Γ)-modules and the Robba Ring. Following [15] we fix the convention that
the p-adic cyclotomic character has Hodge-Tate weight 1 and Sen polynomial X − 1. As
in [7] we normalise the local class fields theory reciprocity map to send a uniformiser to
geometric Frobenius. Under this choice of normalisation the the cyclotomic character cor-
responds to χ, the character on Q∗p given by χ(x) = x|x|. The reader is cautioned that
our convention on the sign of Hodge Tate weights is different than in [7] which we shall
frequently cite. As above let E/Qp be a finite extension.

The Robba ring with coefficients in E is the E-algebra RE of powers series

f(z) =
∑
n∈Z

an(z − 1)n, an ∈ E

converging on some annulus of Cp of the form r(f) ≤ |z − 1| < 1, equipped with its nat-
ural E-algebra toplology. RE is naturally equipped with commuting E-linear, continuous
actions of ϕ and the group Γ := Z∗p defined by

ϕ(f)(z) = f(zp), γ(f)(z) = f(zγ).

Note that RE = RQp ⊗Qp E. Similarly, if A ∈ ob(ARE) we define RA := RQp ⊗Qp A. In
the case when A = E, the Robba ring over E is a Bezout domain. An important element
of RQp (and consequently any RA) is

t = log(z) :=
∑
n≥1

(−1)n+1 (z − 1)n

n
.

It is important to observe that

ϕ(t) = pt, γ(t) = γt, ∀γ ∈ Γ.
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Definition 1. let A ∈ ob(ARE). A (ϕ,Γ)-module over RA is a finitely generated RA-
module D which is free over RQp and eqiupped with commuting, RA-semilinear, contiuous
actions of ϕ and Γ, and such that RQpϕ(D) = D.

Let A ∈ ob(ARE). Let D be a (ϕ,Γ)-module over RA. Let D be of rank d ∈ N over
RQp . By work of Kedlaya ([14]) we may associate to D a sequence of rational numbers
s1 ≤ · · · ≤ sd called the slopes of D. We say that D is etale if all the slopes are 0. By work
of Fontaine, Cherbonnier-Colmez and Kedlaya (see proposition 2.7 of [10]) we have:

Proposition 6. There is a ⊗-equivalence of categories between A-representations of GQp
and etale (ϕ,Γ)-module over RA.

By lemma 2.2.7 of [1] if VA is a free, rank n, A-module equipped with a continuous
A-linear action of GQp then the associated etale (ϕ,Γ)-module is free of rank n over RA.

3.4. (ϕ,Γ)-modules of rank one. Let A ∈ ARE . Let D be a (ϕ,Γ)-module over RA. We
say that D is of rank one if it is free of rank one over RA. Let δ : Q∗p −→ A∗ be a continuous
character. Following Colmez ([9]) we may associate to δ a rank one (ϕ,Γ)-module RA(δ)
as follows: we equip RA with the following semilinear actions

ϕ(1) = δ(p)1, γ(1) = δ(γ)1 ∀γ ∈ Γ.

By proposition 4.2 of [7], we know that any rank one (ϕ,Γ)-module over RA, arises as
above for a unique such δ. We remark that if δ̄ is the reduction of this character modulo
the maximal ideal then the RA(δ) is etale if and only if δ̄(p) ∈ O∗E .

Definition 2. Let A ∈ ARE. Let D be a (ϕ,Γ)-module over RA, which is free of rank
2. We say that D is trianguline if D is an extension of two rank one (ϕ,Γ)-modules over
RA. A triangulation of D is a choice of a rank one (ϕ,Γ)-modules D′ ⊂ D such that
D/D′ is rank one. More precisely D is trianguline if there exist two continuous characters
δ1, δ2 : Q∗p −→ A∗ such that there is a short exact sequence (in the category of (ϕ,Γ)-
modules):

0→ RA(δ1) −→ DE −→ RA(δ2) −→ 0.

There is a natural generalisation of this definition to higher dimension ([1]).
Let VA be a free A-module equipped with a continuous A-linear action of GQp . By

proposition 6 we may associate to VA a free (ϕ,Γ)-module over RA, which we denote DA.
We say that VA is trianguline if DA is trianguline. We can detect whether VA is trianguline
directly by using the following crucial result of Colmez and Chenevier.

Proposition 7. Let A ∈ ob(ARE). Let DA be an etale (ϕ,Γ)-module over RA, which is
free of rank 2 corresponding to VA as above. Suppose that for λ ∈ A∗ there exists a free
A-module of rank one A.v ⊂ Dcris(VA)ϕ=λ. Let s ∈ Z be the minimal integer such that
v /∈ Fils+1Dcris(VA) then DA is an extension of RA(δ2) by RA(δ1), where δ1(p) = λp−s

and (δ1)|Γ = χ−s, and δ2 = det(VA)δ−1
1 . In particular DA is trianguline.

Proof. This is proposition 4.6 of [7]. �
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Proposition 8. Let A ∈ ARE. Let δ1, δ2 : Q∗p → A∗ be two continuous characters. Let
δ̄1, δ̄2 : Q∗p → E∗ be their respective reductions modulo the maximal ideal of A. Suppose
that δ̄1δ̄

−1
2 6= x−i, χxi for i ≥ 0. Then Ext(ϕ,Γ)(RA(δ2),RA(δ1)) is a free A-module of rank

1.

Proof. This is proposition 4.3 of [7] �

3.5. Trianguline Deformations and Kisin’s h-deformations. The aim of this section
is to compare the trianguline deformation functor of [1] and the h-deformation functor
introduced in [15]. In favourable circumstances the two will turn out to be isomorphic.

For the rest of the section let VE be a 2-dimensional E-vector space with continuous
E-linear action of GQp . We say that VE satisfies (†) if

(1) VE is absolutely irreducible.
(2) There exists λ ∈ E∗ such that there exists a non-zero period

vh ∈ D+
cris(VE)ϕ=λ.

(3) VE is not cristalline (hence vh is unique up to a multiple of E∗).
(4) The generalised Hodge-Tate weights of VE are 0 and k /∈ −N ∪ {0}.

(†) is exactly the type of condition introduced in [15]. We wish to recast it in the language
of (ϕ,Γ)-modules.

Let DE , denote the (ϕ,Γ)-module associated to VE .

Proposition 9. Assume that VE satisfies (†). Then DE is an extension of the following
form:

0→ RE(δ1) −→ DE −→ RE(δ2) −→ 0,
where δ1 is trivial on Z∗p. Moreover, δ1 and δ2 are unique and the extension is not split in
the category of (ϕ,Γ)-modules over RE. Moreover, the collection of such extensions of DE

forms a torsor under E∗. In particular DE is trianguline with a unique triangulation.

Proof. This is just an application of proposition 7 observing thatD+
cris(VE) ⊂ Fil0(Dcris(VE))

and the jumps in the filtration must occur at negative integers by (4) of †. The assumption
that VE is not cristalline together with the part (iii) of theorem 0.5 of [9] tells us that the
characters δ1 and δ2 are unique. The extension is not split because this would contradict
part (1) of (†).

We must finally show that the collection of such extensions is a torsor under E∗. This is
equivalent to showing that Ext(ϕ,Γ)(RE(δ2),RE(δ1)) is a one dimensional E-vector space.
The proposition 8 this is precisely when δ1δ

−1
2 6= x−i, χxi for i ≥ 0. The second condition

cannot hold because of property (4) of (†). Thus, we need to overrule the situation where
δ1δ
−1
2 = x−i for i > 0. By remark 3.4 of [7] we know that δ1δ2(p) ∈ O∗E and δ1(p) ∈ OE .

By property (1) of (†) we know, furthermore, that δ1(p) /∈ O∗E . Thus, δ2(p) /∈ OE . If
δ1δ
−1
2 = x−i for some i > 0, then δ1(p) = p−iδ2(p). This second term is not integral, which

is a contradiction. Thus, δ1δ
−1
2 6= x−i for i > 0. The result follows. �



GEOMETRIC LEVEL RAISING AND LOWERING ON THE EIGENCURVE 15

From now on assume that VE satisfies (†). Fix a non-zero cristalline period

vh ∈ D+
cris(VE)ϕ=λ.

Following [15] we define the h-deformation functor, Dh,ϕVE on ARE , which assigns to any
A ∈ ob(ARE) the set of isomorphism classes VA of deformations of VE such that there
exists λ̃ ∈ A∗ lifting λ and a non-zero period

ṽh ∈ D+
cris(VA)ϕ=λ̃

lifting vh. By proposition 8.12 of [15], λ̃ is uniquely determined by λ and ṽh up to a mul-
tiple of A∗.

Following [1], we define the trianguline deformation functor DtrVE , in the language of (ϕ,Γ)-
modules. To any A ∈ ob(ARE), DtrVE (A) is the set of isomorphism classes of triples
(DA, π, T ), where

(1) DA is a free (ϕ,Γ)-module of rank 2 over RA.
(2) π : DA ⊗A E ∼= DE is an isomorphism of (ϕ,Γ)-modules over RE , i.e. DA is a

deformation of DE .
(3) T is a triangulation of DA associated to an extension of the form:

0 // RA(δ̃1) // DA
// RA(δ̃2) // 0 ,

where δ̃1, δ̃2 : Q∗p → A∗ are two continuous characters such that δ̃1|Z∗p = 1 and after
tensoring over A with E and applying π we recover DE together with its unique
triangulation.

Observe that this implies that in this case δ̃1 and δ̃2 reduce to δ1 and δ2 modulo the maximal
ideal of A. This definition is slightly different than the one found in [1]. We are restricting
the behaviour of δ̃1.

Proposition 10. Let VE satisfy (†). Then Dh,ϕVE and DtrVE are isomorphic.

Proof. Let DE be the (ϕ,Γ)-module over RE associated to VE . By proposition 2.3.13 of
[1] we know that the defomation functor of VE and the deformation functor of DE are
isomorphic. Thus, for A ∈ ob(ARE), we must show that the existence of a non -zero crys-
talline period of VA, lifting vh, gives rise to a unique triangulation on DA with the desired
properties, and vice versa.

Let A ∈ ob(ARE). Choose a deformation VA of VE such that there exists a lifting

ṽh ∈ D+
cris(VA)ϕ=λ̃.

Let DA be the etale (ϕ,Γ)-module associated to VA. By proposition 2.3.13 of [1], This is
a deformation of DE , the (ϕ,Γ)-module associated to VE .

The existence of ṽh together with the above proposition implies that DA is trianguline.
We know any triangulation must reduce to the unique triangulation on DE . Condition (4)
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of (†) implies that δ1δ
−1
2 6= xi for all i > 0. Hence by proposition 2.3.6 of [1] we know that

this triangulation is unique. This also follows for the above proposition 8. If the rank one
submodule has associated character δ̃1, then we know that it must reduce to δ1 modulo the
maximal ideal. However by above proposition we know that δ̃1|Γ = χ−s for some s ≥ 0.
Because δ1|Γ = 1, the only way these two conditions can hold is if δ̃1|Γ = 1. Hence the
triangulation on DA is of the desired form.

Conversely let us assume that DA a free (ϕ,Γ)-module of rank 2 over RA deforming DE ,
together with a triangulation of the desired form. Again by proposition 2.3.13 of [1] we
know that DA is etale and corresponds to VA, a deformation of VE .

Let ṽh ∈ DA be a basis for the rank one submodule RA(δ̃1) such that Γ acts trivially on
ṽh and ϕ acts by some λ̃, a lift of λ. Hence

ṽh ∈ DΓ=1,ϕ=λ̃
A .

A fundamental result of Berger ([2]) tells us that there is a natural filtration and Frobenius
preserving A-module isomorphism:

Dcris(VA) ∼= ([1/t]DA)Γ=1

Hence (under this isomorphism) ṽh ∈ Dcris(VA)ϕ=λ̃. By lemma 2.4.2 of [1] we know that

ṽh ∈ Fil0(Dcris(DA)ϕ=λ̃)

By lemma 3.2 of [15] we know that

Fil0(Dcris(DA)ϕ=λ̃) = D+
cris(VA)ϕ=λ̃.

Hence
ṽh ∈ D+

cris(VA)ϕ=λ̃

Finally we may scale by an element of A∗, to ensure that ṽh is a lift of vh. This establishes
a bijection between Dh,ϕVE (A) and DtrVE (A). This establishes a natural isomorphism because
the the fact that lifts of triangulations are necessarily unique by proposition 2.3.6 of [1]. �

This result allows us to use the techniques of (ϕ,Γ)-theory to determine the properties
of this functor.

Proposition 11. Assume that VE satisfies (†). Then the functor Dh,ϕVE is pro-representable
and formally smooth.

Proof. By proposition 9, Dh,ϕVE is isomorphic to DtrVE . The assumptions in (†) allows us to
apply proposition 2.3.9 and 2.3.10 of [1]. The result follows immediately. �

Proposition 12. Let us assume that VE satisfies (†). Then the functor Dh,ϕVE is pro-
representable by a formally smooth complete local Noetherian ring of dimension 3, which
we denote Rh,ϕVE ∈ ARE
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Proof. By the previous proposition we know that we need only to determine the dimension
of the tangent space of Dh,ϕVE . Let E[ε] := E[X]/(X2) be the dual numbers. We wish to
determine dimE(Dh,ϕVE (E[ε])). Let DE[ε] be a deformation of DE . By (†) and proposition 8
we know that any triangulation on DE[ε] lifting the unique one on DE is necessarily unique.
Conversely, if δ̃1, δ̃2 : Q∗p → E[ε]∗ are two continuous characters lifting δ1 and δ2, then by
proposition 8 we know that there is a unique (up to isomorphism) trianguline deformation
DE[ε] of DE with weights characters δ̃1 and δ̃2.

Thus the problem is reduced to determining the acceptable lifts of δ1 and δ2. There is
no restriction on the δ̃2 lifting δ2 and the space of such lifts is naturally a 2 dimensional
E-vector space. The restriction that δ̃1 is trivial on Z∗p means that the space of appropriate
lifts has E-dimension 1. We deduce that dimE(Dh,ϕVE (E[ε])) = 3. The result follows. �

It will be convenient to consider a framed version of Dh,ϕVE . We will denote this new

functor by D�,h
VE

:= D�
VE
×DVE D

h,ϕ
VE

. We have removed ϕ merely to simplify the notation.

The forgetful morphism D�,h
VE
→ Dh,ϕVE is formally smooth of relative dimension 3. Hence

we have :

Corollary 1. Let VE satisfy (†). then the functor D�,h
VE

is pro-representable by a formally

smooth complete local Noetherian ring of dimension 6, which we denote R�,h
VE
∈ ARE.

Proof. The result is immediate after observing, by proposition 12, thatDh,ϕVE is pro-represented

by a formally smooth complete local noetherian ring of dimension 3 and that D�,h
VE
→ Dh,ϕVE

is formally smooth of relative dimension 3. �

4. Global Deformations

4.1. Presenting Global Deformation Rings Over Local Ones. We will ultimately
be studying global deformation rings of deformations with prescribed behaviour both at l
and p, to give us information about the local geometry of deformation spaces. Hence in
this section we develop the theory of presenting global deformation rings over local defor-
mation rings in the characteristic zero case. We follow [16], very closely, where the unequal
characteristic case is considered.

Let F be a number field and S a finite set of places of F containing all those which
divide the prime p. Fix an algebraic closure F̄ of F and denote FS ⊂ F̄ the maximal
extension of F unramified outside of S. Write GF,S = Gal(F̄ /F ).

Let Σ ⊂ S and fix an algebraic closure F̄v of Fv for each v ∈ Σ. Write GFv = Gal(F̄v/Fv).
We also fix embeddings F̄ ⊂ F̄v inducing the inclusion GFv ⊂ GF,S for each v ∈ Σ. All
Galois groups we have described satisfy the p-finiteness condition introduced in §2.

Let E/Qp be a finite extension and VE a finite dimensional E-vector space equipped
with a continuous action of GF,S . Let d = dimE(VE).
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For each v ∈ Σ fix a basis βv of VE . We denote by D�
v the framed deformation functor

of (VE |GFv
, βv). We denote the universal framed deformation ring by R�

v . Recall that it
is a complete local Noetherian ring with residue field E. We set R�

Σ = ⊗̂v∈ΣR
�
v and we

denote by m�
Σ the maximal ideal of R�

Σ .
Similarly, we define the functor D�

F,S which to every A ∈ ob(ARE) assigns the set of
isomorphism class of tuples (VA, {βv,A}v∈Σ) where VA is a deformation of VE as a GF,S
representation and βv,A is an A-basis. This functor is pro-represented by a complete local
Noetherian ring which we denote by R�

F,S . Again we denote the maximal ideal of R�
F,S by

m�
F,S .
The functoriality of our construction together with the Yoneda lemma ensures that there

is a natural morphism R�
Σ → R�

F,S . Hence R�
F,S naturally has the structure of a R�

Σ-algebra.
For i ∈ {0, 1, 2} we define hiΣ to be the dimension of the kernel to the natural map of

E-vector spaces:

γi : H i(GF,S , adVE)→
∏
v∈Σ

H i(GFv , adVE).

Proposition 13. Let

η : m�
Σ/m

�,2
Σ → m�

F,S/m
�,2
F,S

be the map on tangent spaces induced by the natural map R�
Σ → R�

F,S. Then R�
F,S is a

quotient of a power series ring over R�
Σ in dimE(cokerη) variables by at most dimE(kerη)+

h2
Σ relations.

Proof. We follow the proof of proposition 4.1.4 of [16] very closely. Our situtation is simpler
as all rings are equicharacteristic zero.

The number of generators of R�
F,S over R�

Σ is equal to the E-dimension of the tangent

space of R�
F,S/m

�
Σ . The tangent space of this ring is naturally equal to m�

F,S/(m
�,2
F,S ,m

�
Σ) =

coker(η). This proves the result about the number of generators. For ease of notation let
h = dimE(coker(η)). Hence there is a surjection

R̃ := R�
Σ [[x1, ...xh]]→ R�

F,S ,

which by construction induces a surjection on tangent spaces whose kernel is naturally
isomorphic to ker(η). Let J be the kernel of this surjection. We wish to bound the number
of generators of J . Write m̃ for the maximal ideal of R̃. Nakayama’s lemma tells us that
the minimal number of generators of J is equal to the dimE(J/m̃J). Let

ρ : GF,S → GLd(R�
F,S)

denote the universal framed deformation and consider a continuous set theoretic lifting

ρ̃ : GF,S → GLd(R̃/m̃J)
of ρ. Such a lifting is always possible. Define a 2-cocycle
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c : G2
F,S → J/m̃J ⊗E adVE ; c(g1, g2) = ρ̃(g1g2)ρ̃(g2)−1ρ̃(g1)−1.

Here we are naturally embedding the kernel of GLd(R̃/m̃J) → GLd(R�
F,S) in J/m̃J ⊗E

adVE .
The class [c] of c in H2(GF,S , adVE)⊗E J/m̃J depends only on ρ and not ρ̃ . It vanishes

if and only if ρ̃ can be chosen to be a homomorphism. By construction it it clear that for
each v ∈ Σ, ρ|GFv

may be lifted to GLd(R�
v ) and hence GLd(R̃). We deduce that the image

of c in H2(GFv , adVE) ⊗E J/m̃J = 0 Hence [c] ∈ ker(γ2) ⊗E J/m̃J . Hence if (J/m̃J)∗ is
the E-dual of J/m̃J we get the natural map

δ : (J/m̃J)∗ → ker(γ2); u→ 〈[c], u〉.
For ease of notation let us write I = kerη. Observe that (J/m̃J) surjects onto I ⊂ m̃/m̃2

and hence we get an inclusion I∗ ⊂ (J/m̃J)∗. We claim that I∗ contains the kernel of δ.
Suppose that 0 6= u ∈ (J/m̃J)∗ is in kerδ. Let R̃u be the push-out of R̃/m̃J by u. Hence

R�
F,S
∼= R̃u/Iu where Iu ⊂ R̃u is an ideal of square zero, which is isomorphic to E as an

R̃u-module. Since u ∈ kerδ, we know that ρ lifts to a representation ρu : GF,S → GLd(R̃u).
Hence the natural map R̃u → R�

F,S has a section by the universal property of R�
F,S . Hence

R̃u ∼= R�
F,S ⊕ Iu. In particular the map R̃u → R�

F,S does not induce an isomorphism on
tangent. We deduce that the composite

ker(J/m̃J → I)→ J/m̃J → Iu

is not surjective, and hence is zero. We conclude that u factors through I. By rank nullity
we deduce that

dimE(J/m̃J)∗ ≤ dimEI + dimE(kerγ2) = dimE(kerη) + h2
Σ.

�

Proposition 14. Suppose that Σ contains all places of F dividing p and S contains all
places dividing ∞. Let us also assume that the map

θ : H0(GF,S , (adVE)∗(1))→
∏
v|∞

Ĥ0(GFv , (adVE)∗(1))×
∏

v∈(S\Σ)f

H0(GFv , (adVE)∗(1))

is injective, where (S\Σ)f denotes the finite places and Ĥ0(GFv , (adVE)∗(1)) is the usual
cohomology group modulo the subgroup of norms. We note that this condition is automat-
ically satisfied if (S\Σ)f 6= ∅.

Then there exists a positive integer r such that

R�
F,S = R�

Σ [[x1, ..., xr]]/(f1, ..., fr+s).

Where s =
∑

v|∞,v/∈Σ dimE(H0(GFv , adVE)).
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Proof. We have the following series of natural equalities:

dimE(m�
F,S/m

�,2
F,S) = dimE(D�

F,S(E[ε]))

= d2|Σ|+ dimE(H1(GF,S , adVE))− dimE(H0(GF,S , adVE)).

Similarly we have

dimE(m�
Σ/m

�,2
Σ ) =

∑
v∈Σ

dimE(D�
v (E[ε]))

= d2|Σ|+
∑
v∈Σ

[dimE(H1(GFv , adVE))− dimE(H0(GFv , adVE)].

Local Tate duality, the final three terms of the Poitou-Tate sequence and the injectivity of
θ imply that we have the equality

h2
Σ = dimE(H2(GF,S , adVE))−

∑
v∈Σ

dimE(H2(GFv , adVE))

By proposition 13 we know that we may convert the information about the number of
generators and relations into statements about local and global Euler characteristics. If η
is the map defined in proposition 13 then we observe that

s = dimE(kerη) + h2
Σ − dimE(cokerη)

= dimE(m�
Σ/m

�,2
Σ )− dimE(m�

F,S/m
�,2
F,S)

+ dimE(H2(GF,S , adVE))−
∑
v∈Σ

dimE(H2(GFv , adVE))

= χ(GF,S , adVE)−
∑
v∈Σ

χ(GFv , adVE)

Now we may apply Tate’s results on local and global euler characteristic formulae. Hence
we get the equality

s =
∑

v|∞,v/∈Σ

dimE(H0(GFv , adVE)).

�

4.2. Global Applications. Let F be a finite field of characteristic p. Let S be a finite set
of places of Q containing p and∞. Fix an embedding Q̄ ⊂ Q̄p. Let VF be a two dimensional
F-vector space equipped with a continuous, odd action of GQ,S . Furthermore, assume that
endF[GQ,S ]VF = F. This ensures that the deformation functor DVF is pro-representable with
universal noetherian deformation ring RVF ∈ ob(ARW (F)) Let XVF denote the associated
universal deformation space of VF. Following §11 of [15] we may construct a Zariski closed
subspace Xfs ⊂ XVF × Gm, which we may view as a Galois theoretic analogue of the
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Coleman-Mazur eigencurve ([8], [5]) of the appropriate tame level. The construction of this
subspace is rather technical and we refer the reader to [15] for a precise definition. The
following crucial property of Xfs allows one to use Galois deformation theoretic techniques
to study its local geometry:

Theorem 4. Let (x, λ) ∈ Xfs have residue field E. Let Vx denote the induced E-vector
space together with it’s natural action of GQ,S. Let V p

x denote the restriction of this rep-
resentation to GQp. Assume that the generalised Hodge-Tate weights of V p

x are 0 and
k /∈ −N ∪ {0}. Then there exists a non-zero vector

vh ∈ D+
cris(V

p
x )ϕ=λ

Furthermore, the complete local ring ÔXfs,(x,λ) ∈ ARE pro-represents the functor

DVx ×DV px D
h,ϕ
V px
.

Proof. First note that we are taking the dual conventions to [15]. Hence the existence of
vh is equivalent to the existence of a non-zero, GQp-equivariant E-linear morphism

h : V ∗E → (B+
cris ⊗Qp E)ϕ=λ.

The result then follows by a combination of theorems 11.2 and 11.3 of [15], after observing
that condition (11.2)(1) is the same as our restriction on the generalised Hodge Tate weights
of V p

x . �

Let (x, λ) ∈ Xfs . We say that (x, λ) satisfies (‡) if
(1) Vx and V p

x are absolutely irreducible.
(2) V p

x has generalised Hodge-Tate weights 0 and k /∈ −N ∪ {0}.
(3) V p

x is not cristalline.
We should observe that under these assumptions the associated trianguline (ϕ,Γ)-module
satisfies:

0→ RE(δ1) −→ D(V p
x ) −→ RE(δ2) −→ 0,

where δ1δ
−1
2 6= xZ, χxN. Also note that, by proposition 12, under these assumptions the

deformation functor Dh,ϕ
V px

is pro-representable by a smooth complete local noetherian ring

of dimension 3. Furthermore, by corollary 1, D�,h
V px

is pro-represented by a smooth complete

local noetherian ring of dimension 6, denoted R�,h
V px

.

The Framed Xfs Space. Assume that S now contains the prime l, where l and p are
distinct. Fix an embedding Q̄ ⊂ Q̄l. Let Σ = {l, p} and assume that S \ {l, p,∞} 6= ∅. As
in §4.1, we define the deformation functor D�

Q,S which to every A ∈ ARW (F) assigns the
set of isomorphism classes of tuples (VA, {βv,A}v∈Σ), where VA is a deformation of VF as a
GQ,S representation and βv,A is an A-basis. This functor is always pro-representable and
we denote the universal deformation space by X�

VF
.
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There is a natural surjective morphism of rigid spaces X�
VF
→ XVF , induced by the for-

getful functor. This map is formally smooth of relative dimension 7. We naturally get a
morphism X�

VF
× Gm → XVF × Gm, acting as the identity on Gm. This allows us to form

the fibre product:

X�
fs

��

// X�
VF
×Gm

��

Xfs // XVF ×Gm

The natural morphism X�
fs → Xfs is surjective and formally smooth of relative dimen-

sion 7.

Let V l
F denote the restriction of VF to the decomposition group at l. Let X�

V lF
denote

the associated universal framed (one framing) deformation space. Note there is a natural
functorial morphism X�

VF
→ X�

V lF
. This induces a canonical morphism X�

fs → X�
V lF

. Let

(x, f) ∈ X�
fs with residue field E. Let x′ ∈ X�

V lF
be the image of (x, λ) under the above

morphism. Let R′x denote the complete local ring at x′. By construction there is a natural
embedding k(x′) ⊂ E, where k(x′) is residue field at x′. Let us write V l

x for the restriction
of Vx to GQl . We write R�

V lx
:= Rx′⊗̂k(x′)E ∈ ARE . By §2 this ring pro-represents the

usual framed deformation functor associated to V l
x.

We say that (x, f) ∈ X�
fs satisfies (‡) if its image in Xfs does.

Proposition 15. Let (x, f) ∈ X�
fs have residue field E. Assume that (x, λ) satisfies (‡),

then

ÔX�
fs,(x,λ)

∼= (R�,h
V px
⊗̂ER�

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

Proof. Let D�
Vx

denote the functor which assigns to every A ∈ ob(ARE) the set of iso-
morphism classes of tuples (VA, {βv,A}v∈Σ), where VA is a deformation of Vx as a GQ,S
representation and βv,A is an A-basis.

Let D�
V px

the the usual framed deformation functor of V p
x . By usual, we mean with only

one framing. This functor is pro-represented by a complete local noetherian ring , which,
as usual, we denote by R�

V px
. Observe that there is a natural transformation: D�

Vx
→ D�

V px
.

There is also a forgetful natural transformation: D�,h
V px
→ D�

V px
. Exactly the same proof as in

the unframed case shows that because of (‡) the complete local ring at (x, λ) pro-represents
the functor:

D�
Vx ×D�

V
p
x

D�,h
V px

.
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If the D�
V lx

is the usual framed deformation functor of V l
x, then we denote its universal

noetherian complete local ring by R�
V lx

. Observe that by assumption S \ {l, p,∞} 6= ∅.
Hence, by proposition 14, we know that D�

Vx
is pro-represented by a complete local ring of

the form

R�
Vx = (R�

V px
⊗̂ER�

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+s),

where s = dimE(H0(GFv , adVx)) and v = ∞. Because Vx is odd this implies that s = 2.
We deduce that

D�
Vx ×D�

V
p
x

D�,h
V px

is pro-represented by a ring of the from: (R�,h
V px
⊗̂ER�

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2). Com-

bining all of the above we deduce that

ÔX�
fs,(x,λ)

∼= (R�,h
V px
⊗̂ER�

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

�

Level Lowering and Level Raising on Xfs. Recall that we have the closed subspaces:

X
�,sp
V lF
⊂ X�

V lF

and

X
�,N=0

V lF
⊂ X�

V lF
.

Recall that to any x ∈ X�
V lF

we may associate a 2-dimensional Frobenius semi-simple Weil-

Deligne representation (ρx, Nx). As in §1, let π denote the Tate normalised local Langlands
correspondence. Recall that x ∈ X

�,sp
V lF

if and only if π(ρx, Nx) is a subquotient of a re-
ducible principal series representation.

Similarly, recall that x ∈ X
�,N=0

V lF
if any only if Nx = 0. Note that X

�,sp
V lF

and X
�,N=0

V lF
intersect precisely when π(ρx, Nx) is one dimensional.

We form the following fibre products:

X�,sp
fs

��

// X
�,sp
V lF
×Gm

��

X�
fs

// XVF ×Gm
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and

X�,N=0
fs

��

// X
�,N=0

V lF
×Gm

��

X�
fs

// XVF ×Gm

Let Xsp
fs denote the image of the composition X

�,sp
V lF

→ X�
fs → Xfs. Similarly let XN=0

fs

denote the image of the composition X
�,N=0

V lF
→ X�

fs → Xfs

To summarise we have the following diagram:

X�,sp
fs

��

// X�
fs

��

X�,N=0
fs

��

oo

Xsp
fs

// Xfs XN=0
fs

oo

All vertical arrows are surjective and at points satisfying (‡) are of relative dimension 7.
All horizontal arrows are closed embeddings.

Let (x, λ) ∈ X�,sp
fs , with residue field E. Let x′ ∈ X

�,sp
V lF

denote the image of (x, λ) under

the natural projection. Let Rspx′ be the complete local ring at x′. As before there is a
natural embedding k(x′) ⊂ E, where k(x′) is the residue field at x′. We form the complete
tensor product R�,sp

V lx
:= Rspx′ ⊗̂k(x′)E ∈ ARE .

Proposition 16. If (x, λ) ∈ X�,sp
fs satisfies (‡), then there is an isomorphism (in ARE)

Ô
X�,sp
fs ,(x,λ)

∼= (R�,h
V px
⊗̂ER�,sp

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

Proof. By proposition 15 there is an isomorphism (in ARE)

ÔX�
fs,(x,λ)

∼= (R�,h
V px
⊗̂ER�

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

Recall that R�
V lx

is the completed tensor product of the complete local ring at the image

of x in X�
V lF

with E. By the definition of X�,sp
fs we deduce that the complete local ring at

(x, λ) ∈ X�,sp
fs must be equal to the completed tensor product of ÔX�

fs,(x,λ) with R�,sp
V lx

over

R�
V lx

, hence we deduce that

Ô
X�,sp
fs ,(x,λ)

∼= (R�,h
V px
⊗̂ER�,sp

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

�
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Let (x, λ) ∈ X�,N=0
fs , with residue field E. Let x′ ∈ X

�,N=0

V lF
denote the image of (x, λ)

under the natural projection. Let RN=0
x′ be the complete local ring at x′. As before there

is a natural embedding k(x′) ⊂ E, where k(x′) is the residue field at x′. We form the
complete tensor product R�,N=0

V lx
:= RN=0

x′ ⊗̂k(x′)E ∈ ARE .

Proposition 17. If (x, λ) ∈ X�,N=0
fs satisfies (‡), then there is an isomorphism (in ARE)

Ô
X�,N=0
fs ,(x,λ)

∼= (R�,h
V px
⊗̂ER�,N=0

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

Proof. Exactly the same as above. �

We are now in a position to state the two main theorems of this section:

Theorem 5. If (x, λ) ∈ Xsp
fs satisfies (‡), then it lies on a irreducible component of di-

mension greater than or equal to one.

Proof. We know that at points which satisfy (‡) the morphism X�,sp
fs → Xsp

fs is formally
smooth of relative dimension 7. Hence if we choose a point lying over (x, λ) and determine
the dimension of its complete local ring we can deduce the dimension of ÔXsp

fs,(x,λ). By an

abuse of notation let (x, λ) ∈ X�,sp
fs be such a point. We know by the proposition 16 that

Ô
X�,sp
fs ,(x,λ)

∼= (R�,h
V px
⊗̂ER�,sp

V lx
)[[x1, · · · , xr]]/(f1, · · · , fr+2).

By (‡) we know, by corollary 1, that R�,h
V px

is formally smooth of dimension 6. By the-
orem 3 we know that X�

V lF
is formally smooth of dimension 4. Hence we deduce that

dim(Ô
X�,sp
fs ,(x,λ)

) ≥ 8. Thus dim(ÔXsp
fs,(x,λ)) ≥ 8− 7 = 1. The result follows. �

Theorem 6. If (x, λ) ∈ XN=0
fs satisfies (‡), then it lies on an irreducible component of

dimension greater than or equal to one.

Proof. The proof is identical to the above theorem. �

5. The Coleman-Mazure Eigencurve

Let S be a finite set of places of Q containing p and ∞. Let VF be a two dimensional F-
vector space equipped with a continuous, odd action of GQ,S . Let us furthermore assume
that endF[GQ,S ]VF = F and that VF is modular. By modular we mean that up to semi-
simplification it is isomorphic to a mod p representation attached to a classical cuspform.
As usual we let XVF denote the universal deformation space associated to VF.

Coleman and Mazur show that the points (x, λ) ∈ XVF × Gm such that Vx corresponds
to a cuspidal eigenform f of level Γ(Mpr) with r ≥ 1 and Upf = λf , interpolate to a rigid
analytic curve E ⊂ XVF × Gm. Here M is a natural number whose divisors are the finite
primes in S not equal to p. The possible M are bounded by the ramification properties of
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VF (see [4]). Let N the maximal such M . E is the cuspidal Coleman Mazur eigencurve of
tame level N lying over VF.

The Cp-valued points of E correspond bijectively to systems of Hecke eigenvalues associ-
ated to cuspidal, overconvergent, eigenforms of tame level N , which are of finite slope (i.e.
the eigenvalue of Up is non-zero) and whose residual Galois representations have the same
semi-simplification as VF. It is systems of Hecke eigenvalues and not eigenforms themselves
because if N 6= 1 then if l is a prime dividing N then given a cuspform which is new at
l then we can l-stabilse to get two old forms at l which have the same associated Galois
representation and Up eigenvalue, hence correspond to the same point on E . The Hecke
theoretic construction of E (see [5]) involves glueing suitable Hecke algebras away from the
tame level N . If we carry out the same construction with full Hecke-algebras (i.e. including
for those primes dividing N) then we get a curve whose Cp-valued points correspond bijec-
tively to cuspidal, overconvergent, eigenforms of tame level N , which are of finite slope. Let
Ẽ denote the component of this curve whose points have associated residual representation
isomorphic to the semi-simplification of VF. There is a natural morphism of rigid analytic
curves Ẽ → E .

Let Eo ⊂ E denote the locus whose associated global Galois representation is absolutely
irreducible. This is a dense, admissible open subset containing all points corresponding
to classical cuspforms. Similarly let Ẽo denote the irreducible locus of Ẽ . To any point
x ∈ Ẽo we can associate (see [22]) a smooth, admissible representation of GL2(Ql), πx,l,
and a 2-dimensional Weil-Deligne representation (ρx,l, Nx). On any irreducible component
of Ẽo these representations are generically principal series, special or supercuspidal. As in
§, let π denote the Tate normalised local Langlands correspondence. The central result of
[22] is :

Theorem (Local to Global Compatibility). There is a discrete subset X ⊂ Ẽo such
that for all x ∈ Ẽo, x /∈ X , local to global compatibility holds, i.e.

πx,l ∼= π(ρx,l, Nx).

Moreover, local to global compatibility can fail under one of two situations:
(1) x lies on a generically principal series irreducible component but π(ρx,l, Nx) is one

dimensional.
(2) x lies on a generically special irreducible component but Nx = 0.

Observe that the failure of local to global compatibility is a consequence of the prop-
erties of the Galois representation associated to x. It is, therefore, natural to ask what
consequences the failure of local to global compatibility has for E . In particular we have
the level raising and lowering conjectures in §1.

By work of Kisin ([15]) we know that E ⊂ Xfs. Furthermore in §11 of [15] it is conjectured
that they are equal. In [19] Kisin proves that E = Xo

fs ⊂ Xfs, where Xo
fs is the union

of the irredicible components containing a potentially semistable point. In [12] Emerton
proves, by establishing a local to global principle in the p-adic Langlands programme for
GL2/Q, the following important result:
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Theorem [Emerton]. Let p > 2. Assume that VF satisfied the following conditions:
(1) VF|GQ(ζp)

is absolutely irreducible.
(2) V p

F is p-distinguished and not a twist of an extension of the cyclotomic by trivial
characters.

Then
E = Xfs.

Proof. This follows from theorem 1.2.4 of [12], which proves conjecture 11.8 of [15]. �

Philosophically this is an R = T result. Xfs is constructed Galois theoretically and E
Hecke theoretically. We are now in a position to be prove (under mild technical restrictions)
the level lowering and level raising conjectures.

Theorem (Level Lowering). Let p > 2. Let S be a finite set of places of Q such
that {l, p,∞} ⊂ S and S \ {l, p,∞} 6= ∅. Let VF be a 2-dimensional, mod p, modular
representation of GQ,S such that VF|GQ(ζp)

is absolutely irreducible. Furthermore, assume
that V p

F is p-distinguished and not a twist of an extension of the cyclotomic by trivial
characters. Let E denote the cuspidal eigencurve lying over VF. Let x ∈ E such that

(1) The Galois representation associated to x satisfies (‡).
(2) x lies on a generically special (at l) irreducible component but has trivial monodromy

(i.e. Nx = 0).
Then f lies on a one dimensional generically principal series (at l) irreducible component.

Proof. The assumption on V p
F ensures that E = Xfs. By the theorem 6 we observe that

there is a one dimension component passing through x on which monodromy is identically
zero. Recall that classical points on such a component must be principal series, thus
because they are Zariski dense the whole component is generically principal series. �

Theorem (Level Raising). Let p > 2. Let S be a finite set of places of Q such that
{l, p,∞} ⊂ S and S \ {l, p,∞} 6= ∅. Let VF be a 2-dimensional, mod p, modular represen-
tation of GQ,S such that VF|GQ(ζp)

is absolutely irreducible. Furthermore, assume that V p
F

is p-distinguished and not a twist of an extension of the cyclotomic by trivial characters.
Let E denote the cuspidal eigencurve lying over VF. Let f ∈ E such that

(1) The Galois representation associated to x satisfies (‡).
(2) x lies on a one dimensional generically principal series (at l) irreducible component

but π(ρx,l, Nx) is one dimensional.
Then x lies on a one dimensional generically special (at l) irreducible component.

Proof. The assumption on V p
F ensures that E = Xfs. The by theorem 5 we know that x

must lie on one dimensional irreducible component which is generically special. �

These two theorems may be amalgamated into the following central result:

Theorem 7. Let p > 2. Let S be a finite set of places of Q such that {l, p,∞} ⊂ S and
S \ {l, p,∞} 6= ∅. Let VF be a 2-dimensional, mod p, modular representation of GQ,S such
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that VF|GQ(ζp)
is absolutely irreducible. Furthermore, assume that V p

F is p-distinguished and
not a twist of an extension of the cyclotomic by trivial characters. Let E denote the cuspidal
eigencurve lying over VF. Let x ∈ E with associated global Galois representation Vx. We
assume that

(1) Vx and V p
x are absolutely irreducible.

(2) The generalised Hodge-Tate weights of V p
x are 0 and k /∈ −N ∪ {0}

(3) π(ρx,l, Nx) is one dimensional.
Then there exist one dimensional irreducible components Z,Z ′ ⊂ E, generically special and
principal series respectively, such that x ∈ Z ∩ Z ′.

Proof. By our assumptions we know that Vx cannot be classical, hence by [19] cannot be
potentially semi-stable. Hence Vx satisfies (‡). x must lie on a one dimensional irreducible
component which is either generically special or principal series. The result follows by the
level raising and lowering theorems. �
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[1] J. Belläıche and G. Chenevier. Families of Galois Representations and Selmer Groups. Asterisque, 324,
2009.
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[11] A. J. de Jong. Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études
Sci. Publ. Math., (82):5–96 (1996), 1995.

[12] Mark Emerton. Local-global compatibility in the p-adic langlands programme for gl2/ q. Preprint,
2010.

[13] Toby Gee. Automorphic lifts of prescribed type. Arxiv Preprint, 2008.
[14] Kiran S. Kedlaya. A p-adic local monodromy theorem. Ann. of Math. (2), 160(1):93–184, 2004.
[15] Mark Kisin. Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math.,

153(2):373–454, 2003.
[16] Mark Kisin. Modularity of 2-dimensional Galois representations. In Current developments in mathe-

matics, 2005, pages 191–230. Int. Press, Somerville, MA, 2007.



GEOMETRIC LEVEL RAISING AND LOWERING ON THE EIGENCURVE 29

[17] Mark Kisin. Moduli of finite flat groups schemes and modularity. to appear in Annals of Mathematics,
2007.

[18] Mark Kisin. Potentially semi-stable deformation rings. J. Amer. Math. Soc., 21(2):513–546, 2008.
[19] Mark Kisin. The Fontaine-Mazur conjecture for GL2. J. Amer. Math. Soc., 22(3):641–690, 2009.
[20] Barry Mazur. An introduction to the deformation theory of Galois representations. In Modular forms

and Fermat’s last theorem (Boston, MA, 1995), pages 243–311. Springer, New York, 1997.
[21] James Newton. Geometric level raising for p-adic automorphic forms. Arxiv Preprint, 2009.
[22] Alexander Paulin. Local to global compatibility on the eigencurve. Axiv Preprint, 2008.
[23] Takeshi Saito. Modular forms and p-adic Hodge theory. Invent. Math., 129(3):607–620, 1997.
[24] Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492–517,

1968.

University of California, Berkeley, 970 Evans Hall, Berkeley, CA, USA
E-mail address: apaulin@math.berkeley.edu


