Abstract Algebra
Basics: Lecterns MTWT IORS Evans Hall $2 \rho m-4 \rho m$ Office Hours MTWTF 796 Evans Hall Rom-1pm Homework due every Thursday in class (Not, st weak) Midterm $7 / 19$ in doss
Final $8 / 9$ is doss
Prerequisites: Linear Megara (54 or equivalent)

What is Algebra?
Two abject combining to from a third. e.g. addition of numbers

Algebra $=$ Abstract study at composition.
The foundations of the subject ave arithmetic.
Unity, The number 1

$N=\{1,2,3, \ldots\}$ the natural numbers.
Comes with t and x.

$$
\mathbb{Z}=\{\cdots-1,0,1,2, \ldots\} \text { the integers. }
$$

Comes with x and x.

As we go down + and x gain move properties.
egg. Given a in \mathbb{Z} there airt b in \mathbb{Z} such that $a+b=b+a=0$
$Q=\left\{\left.\frac{a}{b} \right\rvert\, a, b\right.$ integer, $\left.b \neq 0\right\}$ the natimad numbers.
Comes with $+x$
Exercise : Think back enough past mathematics courses. Give as many examples of sets with some kind of composition as you can. can you spot any recurving properties?

Linear Algebra gives important examples:
$\left(M_{n}(\mathbb{R}),+, x\right)$ - $n \times n$ matrices with real entries together with matrix addition and multiplication.
$\left(G L_{a}(\mathbb{R}), x\right)$ - $n \times n$ inventibu matrices with veal entries together with matrix multiplication

Warning: There ave still major dititevences. Fr e example $a+b=b+a$ far all a, b in \mathbb{Z}, whereas there exist A, B in $G L_{n}(\mathbb{R})$ such that $A B \neq B A$.

$$
\cdot a+b=\frac{(\mathbb{Z},+, x)}{b+a}
$$

for all a, b in \mathbb{Z}

- $(a b) c=a(b c)$

Ion all a, b, c in \mathbb{Z}

- $a|=| a=a$ 7 an all a in \mathbb{Z}
- Given a, b, c in \mathbb{Z}

$$
a(b+c)=a b+a c
$$

$$
\left(M_{n}(\mathbb{R}),+, x\right)
$$

$$
A+B=B+A
$$

far all A, B in $M_{n}(\mathbb{R})$

$$
(A B) C=A(B C)
$$

for all A, B, C in $G L_{n}(\mathbb{R})$.

$$
A I_{n}=I_{n} A=A
$$

for all A is $G L_{n}(\mathbb{R})$.

Given A, B, C is $M_{n}(\mathbb{R})$

$$
A(B+C)=A B+A C
$$

Notice $(\mathbb{Q},+, x)$ has extra propety:

Given $a \neq 0$ in \mathbb{Q}, there exists b is Q such that $a b=b a=1$

Central Idea : Derive and study a broad doss of objects in (sets with compositions) \& which
Abshact Algehra

$$
(\mathbb{Z},+),\left(G L_{n}(\mathbb{R}), x\right),(\mathbb{Z},+, x),\left(M_{n}(\mathbb{R}),+, x\right) \text { and }
$$ (\mathbb{Q}, t, x) ave definitive members

Called
\checkmark general hisean

$$
\begin{aligned}
& (\mathbb{Z},+),\left(G C_{n}(\mathbb{R}), x\right) \xrightarrow{\text { group }} \text { Groups } \leftarrow \begin{array}{l}
\text { Sets with } \\
\text { one composition + propentios }
\end{array} \\
& (\mathbb{Z},+, x),\left(M_{n}(\mathbb{R}),+, x\right) \longrightarrow \text { Rings } \longleftarrow \text { sets worth }+ \text { propetton } \\
& (\mathbb{Q},+, x) \\
& \text { two compoitas }
\end{aligned}
$$

Analogue in Linear Algatra:
$\left(\mathbb{R}^{n},+,{ }^{\bullet}\right) \xrightarrow{\text { Scclow }}$ Multiplication (not dot product)
Real vector spaces

Remark
1/ The power t the subject comes from the fact groups. rings and fields permeate all mothernatical sciences.
2 Don't be fooled into think groups, rings and fields will always look like the above examples. We'll encounter many much move exotic samples throughout the course.

