Galois Theory (An overview)
Assume all fields are sub-tields of \mathbb{C} during this lecture Let $F \subset \subset$ be a sublield and $f(x) \in F[x]$.
Assume $\quad f(x)=a \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ where $a \in F, \alpha_{i} \in \mathbb{C}$.
Definition $F_{7}:=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)_{\pi} \subset \mathbb{C}$ is called the splitting field of $f(x)$. minimal subfield of \mathbb{C}
Example $F=\mathbb{Q}, f(x)=x^{3}-2$

$$
\begin{aligned}
& f(x)=(x-\sqrt[3]{2})\left(x-\sqrt[3]{2} e^{\frac{2 \pi i}{3}}\right)\left(x-\sqrt[3]{2} e^{\frac{4 \pi i}{3}}\right) \\
& \Rightarrow \mathbb{Q}_{f}=\mathbb{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} e^{\frac{2 \pi i}{3}}, \sqrt[3]{2} e^{\frac{2 \pi i}{2}}\right)=\mathbb{Q}\left(\sqrt[3]{2}, e^{\frac{2 \pi i}{3}}\right)
\end{aligned}
$$

More general : $f(x)=x^{n}-a \quad(a \in \mathbb{Q})$

$$
\Rightarrow \quad \mathbb{Q}_{f}=\mathbb{Q}\left(\sqrt[n]{a}, e^{\frac{2 \pi i}{n}}\right) \quad\left(\sqrt[n]{a} \in \mathbb{C} \quad \begin{array}{l}
\text { is a single } \\
n^{+n} \text { rod } d
\end{array}\right)
$$

Definition Let E / F be a field extension. We say $E_{/ F}$ is Galois if $\exists f(x) \in F[x]$ sot. $E=F_{f}$ ie. It E is th splitting Field of some polynomial in $F[x]$.
Examples : $\mathbb{Q}\left(\sqrt[3]{2}, e^{\frac{2 \pi i}{3}}\right) / \mathbb{Q}$ is Galois.

Remands 1/ For chaintenilce p Field extensions there 15 an tea condition required. We've dealing only with subtields of \mathbb{C} so we don't led toworry about it.
$2 \quad E / F$ Galois \Leftrightarrow given $g(x) \in F[x]$ iweducible, either $g(x)$ has no roots in E, or it splits into linear factors in $E[x]$.
$\Rightarrow \mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not Galois . $g(x)=x^{3}-2$ is iweducible in $\mathbb{Q}[x]$, has a root in $\mathbb{Q}(\sqrt[3]{2})$ but cannot split into linear factas as $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$.
$3 E / K, K / F$ Field extensions.
E / F Galois $\Rightarrow E / K$ Galois $\quad G$ ais $\left\{\begin{array}{l}E \\ 1 \\ K \\ 1 \\ F\end{array}\right\} \begin{gathered}\text { Not necersails } \\ \text { Galois. }\end{gathered}$ Examph: $\mathbb{Q}\left(\sqrt[3]{2}, e^{\frac{2 \pi i}{3}}\right)$

$$
\mathbb{Q}\left(e^{2 \pi i / 3}\right) \text { Galois }
$$

Definition Let E / F be a Galois extension.

$$
G_{\text {al }}(E / F)=\left\{\sigma: E \rightarrow E \quad \begin{array}{l}
\sigma \text { is a field automouplusin } \\
\sigma(a)=a \quad \forall a \in F
\end{array}\right\}
$$

Galois grays at E / F
Remarks 1/ $\operatorname{Gal}(E / F)$ is a group under composition.
$2 \quad|G a l(E / F)|=[E: F J \leftarrow$ not obvious

How can we concretely think about Gal (E / F)?
E / F Galois $\Rightarrow E=F_{7}$ for sam $f(x) \in F[x]$.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$
$a_{j} \in F, \alpha_{j} \in \mathbb{C} . \quad \Rightarrow \quad E=F\left(\alpha_{1, \ldots}, \alpha_{n}\right)$
If $\sigma \in \operatorname{Gal}(E / F) \Rightarrow \sigma(a)=a \quad \forall a \in F$
σ is completely determined by what it does to $\alpha_{1 / 1,1}<_{n}$.

$$
\begin{aligned}
f\left(\alpha_{i}\right)=0 & =a_{s}+a_{1} \alpha_{i}+\ldots+a_{n} \alpha_{i}{ }^{n} \\
\Rightarrow \quad \sigma(0) & =\sigma\left(a_{0}+a_{1} \alpha_{i}+\ldots+a_{n} \alpha_{i}{ }^{n}\right) \\
& =a_{0}+a_{1}\left(\sigma\left(\alpha_{i}\right)\right)+\ldots+a_{n}\left(\sigma\left(\alpha_{i}\right)\right)^{n}=0
\end{aligned}
$$

$\Rightarrow f\left(\sigma\left(\alpha_{i}\right)\right)=0 \Rightarrow \sigma\left(\alpha_{i}\right)=\alpha_{j}$; for some j.
$\Rightarrow \quad G a l(E / F)$ acts faithfully on $\left\{\alpha_{1, \ldots} \alpha_{n}\right\}$
This induces an injective homomorplusn $\operatorname{Gal}(E / F) \rightarrow$ Sym.
Example $\quad E=\mathbb{Q}(\sqrt{2}), F=\mathbb{Q} \quad E=\mathbb{Q}_{t}$ whin

$$
f(x)=x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})
$$

Note that $-1 \in \mathbb{Q}(\sqrt{2}) \Rightarrow-\sqrt{2} \in \mathbb{Q}(\sqrt{2})$
$[\mathbb{Q}(\sqrt{2}): \Phi\}=2 \quad\binom{x^{2}-2$ is minimal polnauid of $\sqrt{2}}{$ are w $\mathbb{Q}}$
\Rightarrow There is an injestrye ham $G a\left((\underset{Q}{\mathbb{Q}(\sqrt{2})}) \rightarrow\right.$ Sym z $_{Q}$ and $|G a l(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})|=2 \Rightarrow \operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q}) \cong \operatorname{Sym}_{2}$

Fact: Let. $E=F_{f}$ and $f(x)=f_{1}(x) \ldots f_{m}(x) \in F[x]$ $f_{i}(x) \in F(x)$ irreducible. Assume $\alpha \in E$ is a root of $f_{i}(x)$. arb $(\alpha)=A l l$ roots at $f_{i}(x)$ in E under anion \& $\operatorname{Gal}(E / F)$

This meas that in genera $G a l(E / F) \neq \operatorname{Sym}_{n}$
In fact, even it $f(x)$ iweducible it's still possibh that $G d(E / F) \neq S_{y m_{n}}$
Example $\quad E=\mathbb{Q}(\sqrt[4]{2}, i), F=\mathbb{Q} \Rightarrow$
$E=\mathbb{Q}_{f}$ when $f(x)=x^{4}-2 . \leftarrow$ inducible in $\mathbb{Q}[x]$

$$
\Rightarrow E=\mathbb{Q}(\sqrt[4]{2},-\sqrt[4]{2}, i \sqrt[4]{2},-i \sqrt[4]{2})
$$

Non-tuvid polynomial
Observe $(\sqrt[4]{2})^{2}+(i \sqrt[4]{2})^{2}=0$. relationship between

$$
\begin{aligned}
& \sigma \in G a l(E / Q) \Rightarrow(\sigma(\sqrt[4]{2}))^{2}+(\sigma(i \sqrt[4]{2}))^{2}=\sigma(0)=0 \\
& (\sqrt[4]{2})^{2}+(-\sqrt[2]{2})^{2} \neq 0
\end{aligned}
$$

$\Rightarrow \nexists \sigma \in G a l(E / Q)$ such that $\sigma(\sqrt[4]{2})=\sqrt[4]{2}, \sigma(i \sqrt[4]{2})=-\sqrt[4]{2}$

$$
\Rightarrow \operatorname{Gal}(E / \mathbb{Q}) \not \equiv \operatorname{Sym}_{4}
$$

Condurion:

Gal $(E / F)=$ Permutations at rocts at spllting porguourd which presenve all pobnomid relationshioss between thom.

Fundamental Theorem at Galois Theny
E/F Galois. Theve is a bjection of sets:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { Intormediate } \\
\text { subtields }
\end{array} F \subset K \subset E\right\} \longleftrightarrow \text { (subgrops } H \subset \operatorname{Gal}(E / F) \text {) } \\
& K \longrightarrow\left\{\sigma \in \operatorname{Gal}(E / F) \left\lvert\, \begin{array}{l}
\sigma(k)=k \\
\forall k \in K
\end{array}\right.\right\} \\
& \operatorname{Gal}\left(E^{\prime \prime} / K\right) \\
& K / F \operatorname{Gadoij} \Leftrightarrow \operatorname{Gal}(E / K) \triangleleft \operatorname{Gal}(E / F) \\
& \text { and } \operatorname{Gal}(K / F) \cong \operatorname{Gar}(E / F) / \operatorname{Gal}(E / K)
\end{aligned}
$$

Solving an Equation by Radicals
Q/ Does theme exist a ression of quadratic formula for pobnomids of degree ≥ 3 ?

Exampas
$1 f(x) \cdot x^{2}-x-1$. Quadiatir famula $\Rightarrow \frac{1 \pm \sqrt{5}}{2}$ rode

$$
\Rightarrow \mathbb{Q}_{f}=\mathbb{Q}(\sqrt{s})
$$

Notice in both cases we can get to spatting Field by sucessively adjeing $n^{\text {th }}$ roots at elements. T radicals Observation If there is a version ot the gaaduatic formula for any $f(x) \in \mathbb{Q}[x]$ all rots can can be constructed by doing basic algatraic operations and sucessively taking radicals.

Definition A tower ot radical extensions of Q is a nested cham of Field extensions:

$$
\text { s.t. } \quad \text { Ki }
$$

set.

$$
\underset{\sim}{\mathbb{Q}} \subset K_{1} \subset K_{2} \subset \ldots \subset K_{m}
$$

Say Ki+1/Ki a radical
$1 \quad K_{i+1}=K_{i}\left(\alpha_{i}\right)$ where α_{i} is a root of a polynomial of the form $x^{n_{i}}-b_{i} \in K_{i}[x]$.
2 $e^{\frac{2 \pi \pi_{i}}{n}} \in K_{1}$ where $u=\prod_{i} n_{i} \leftarrow$ This is a and K_{m} / \mathbb{Q} Galois. conditro 1 am imposing to simplify the exposition
Fact : $K_{K_{i-1}}$ Galois and $G a l\left(K_{i} / K_{i-1}\right)$ Abelian.
Definition We say $f(x)$ is soluble by radicals it $Q_{f} \subset K_{m}$ for some tower at radical extensions

$$
\begin{aligned}
& 2 f(x)=x^{3}-2 \Rightarrow \mathbb{Q}_{f}=\mathbb{Q}\left(\sqrt[3]{2}, e^{\frac{211}{3}}\right) \\
& \mathbb{Q} \subset \mathbb{Q}\left(e^{\frac{2 \pi i}{3}}\right) \subset \mathbb{Q}\left(e^{\frac{2 \pi i}{3}}\right)(\sqrt[3]{2}) \\
& \mathbb{Q}\left(\sqrt[3]{2}{ }^{\prime \prime} e^{\frac{2 \pi i}{3}}\right)
\end{aligned}
$$

Sucession ot radical
Fundamental Thenem \Rightarrow

$$
K_{m} \supset K_{m-1} \supset \ldots \ldots K_{2} \supset K_{1} \supset \mathbb{Q}=K_{0}
$$

π

$$
\{e\}<G a l\left(K_{m} / K_{m-1}\right)_{1} . . G a l\left(K_{m} / K_{2}\right)<G a l\left(K_{m} / K_{1}\right) \triangleleft G a l\left(K_{m} / \mathbb{Q}\right)
$$

Abclian
\Rightarrow Simple components of $G a l(K m / Q)$ ave cychr

$$
\binom{\overline{\mathbb{Z}} / p \mathbb{Z}}{p \text { prime }}
$$

We call such groups solvable.
Abrlian \Rightarrow Solvable, Solvable \nRightarrow Mrelian.
structive thoorem for

$$
\text { e.g. }\{a\} \subsetneq A \mid t_{3} \nsubseteq \operatorname{Sym}_{3}
$$

fincte theriangrops
Fat : G solvabh $\Rightarrow A l l$ subgroups ave solvable and G / H solvabh $\quad \forall H \sigma G$.
Hence, $\mathbb{Q} \subset \mathbb{Q}_{\neq} \subset K_{m}$

$$
\begin{aligned}
& \Rightarrow \quad G_{a l}(\mathbb{Q}+/ \mathbb{Q}) \cong G a l\left(K_{m} / \mathbb{Q}\right) \\
& \Rightarrow \quad G_{a l}\left(\mathbb{Q}_{\neq 1}\right) \text { solvable finte aran } \\
& \Rightarrow G_{m}\left(\mathbb{Q}_{\mathrm{a}}\right)
\end{aligned}
$$

Condusion
\exists version of
\& socuble
by radicals

$$
\begin{aligned}
& \exists \text { version of } \\
& \text { gaadratic formala } \\
& \text { Ior } f(x) \in \mathbb{Q}(x)
\end{aligned} \Rightarrow \begin{aligned}
& Q_{f} \text { contamed } \\
& \text { in a tower of } \\
& \text { vadical eetensions }
\end{aligned} \quad \Rightarrow \begin{gathered}
G a l\left(\mathbb{Q}_{\neq} / \mathbb{Q}\right) \\
\text { Solvable }
\end{gathered}
$$

Said another way:
\nRightarrow version of the
$G \operatorname{Gel}\left(\mathbb{Q}_{+} / \mathbb{Q}\right)$ not solvable \Rightarrow quadratic Formal For $f(x) \in a[x]$

Fad: If $f(x) \in \mathbb{Q}[x], \operatorname{deg}(f(x))=5$, inedaina, has exactly 3 real roots then $G a\left(Q_{f / \mathbb{Q}}\right)$
$\cong \operatorname{Sym}_{5}$.
For example, $f(x)=x^{5}+x^{2}-1 / 4$.
Recall (e) $\triangle A l t_{s} \triangleleft S_{y m s}$ and

\Rightarrow Simple components of $\operatorname{Gal}\left(K_{F} / \mathbb{Q}\right)$ are $(\mathbb{Z} / 2 \mathbb{Z}, N \neq 5)$. non-ablian
$\Rightarrow G a l\left(K_{7} / \Phi\right)$ net solvabh
$\Rightarrow f(x)=x^{5}-x^{2}-1 / 4$ not solvable by radicals.
\Rightarrow There is no version of quadratic formula For degree S polynomials \leftarrow same For all degrees $\geqslant 5$
Conjecture: Given any finite group $G, \exists E / \mathbb{Q}$ a Galois extension st. $G \cong \operatorname{Gal}(E / \mathbb{Q})$. ie all finite symmetries can be realized by by considering serves at polynomials with rational coettriceñts.

