Definition Let
$$E/F$$
 be a field extension. We say
 $\overline{E/F}$ is Galois if $\overline{f} + \overline{f} + (x) \in F[x]$ set. $E = F_{+}$
ie. if \overline{E} is the splitting field of some polynomial
in $F[x]$.
 $\overline{Examples}$: $\overline{\mathbb{Q}(\sqrt{12}, e^{\frac{2\pi i}{3}})}$ is Galois.

Remark ' For characteristic p field extensions there 15 an extra condition required. We've dealing only with subfields of C so we don't need to worry about it. $Z = \frac{E}{F}$ Galois \iff given $g(x) \in F[x]$ inveducible, either g(x) has no roots in E, or it splits into linear factors in E[x].

=)
$$\mathbb{Q}(\sqrt[3]{Z})$$
 is not Galois. $g(x) = x^{3}-z$
is involucible in $\mathbb{Q}[x]$, hose a root in $\mathbb{Q}(\sqrt[3]{z})$ but
cannot split into linear tastas as $\mathbb{Q}(\sqrt[3]{z}) \subset \mathbb{R}$.
 $\frac{3}{2} \frac{E}{K}$, $\frac{K}{F}$ field extensions.
 $\frac{E}{F}$ Galois =) $\frac{E}{K}$ Galois $\frac{E}{K}$ Galois.
 $\frac{E}{F}$ Galois =) $\frac{E}{K}$ Galois $\frac{E}{K}$ Galois.
 E_{X} angeh : $\mathbb{Q}(\sqrt[3]{z}, e^{2\pi i})$ Galois.
 $\mathbb{Q}(e^{2\pi i}s)$ Galois.

Definition Let
$$E_{|_{F}}$$
 be a Galois extension.
 $Gal(E_{|_{F}}) = \{ \sigma : E \rightarrow E \mid \sigma \text{ is a Held automorphism} \}$
 $f = \{ \sigma : E \rightarrow E \mid \sigma \text{ is a Held automorphism} \}$
 $Galois group at E_{|_{F}}$

Remarks 1 Gral
$$(E/F)$$
 is a group under composition.
2 | Gral (E/F) | = $[E:F]$ not obvious

How can we concretely think about
$$Gal(E/F)$$
?
 E/F Galois \Rightarrow $E = F_F$ for some $f(a) \in F[x]$.
Let $f(x) = a_0 + a_1 x + \dots + a_n x^n = a_n \prod_{i=1}^n (x - x_i)$
 $a_j \in F$, $x_i \in C$. \Rightarrow $E = F(\alpha_1, \dots, x_n)$
 $If \sigma \in Gal(E/F) \Rightarrow \sigma(a) = a \quad f a \in F \Rightarrow$
 $\forall is completely determined by what it does to
 $\leq i, \dots, \leq n$.
 $f(x_i) = 0 = a_e + a_i x_i + \dots + a_n x_i^n$
 $= \sigma(a_0 + a_i x_i + \dots + a_n x_i^n)$
 $= a_0 + a_1(\sigma(x_i)) + \dots + a_n(\sigma(x_i))^n = 0$
 $\Rightarrow f(\sigma(x_i)) = 0 \Rightarrow \sigma(x_i) = x_j$ for some j.$

=> $Gral(E_{F})$ acts Haithfully on $\{x_{1,...,x_{n}}\}$ This induces an injecture homomorphism $Gral(E_{F}) \rightarrow Symn$. Example $E = O(\sqrt{2})$, F = O $E = O_{f}$ when $f(x) = x^{2} - 2 = (x - \sqrt{2})(x + \sqrt{2})$ Note that $-1 \in O(\sqrt{2}) \Rightarrow -\sqrt{2} \in O(\sqrt{2})$ $[O(\sqrt{2}): O] = 2 (x^{2} - 2 \text{ is minimal polynomial of } \sqrt{2})$ are O

Fact: Let.
$$E = F_{\pm}$$
 and $f(x) = f_{1}(x) \dots f_{m}(x) \in F[x]$
 $f_{1}(x) \in F[x]$ inveducible. Assume $x \in E$ is a root
 $f_{1}(x) = F(x)$. \Rightarrow orb $(x) = f(x)$ roots of $f_{1}(x)$ in E
under adtion of $Gal(E/F)$

This means that in genard
$$Gal(E/F) \neq Symn$$

In Fact, even if $T(x)$ involucible it's still possible
that $Gd(E/F) \not \equiv Symn$
 $Example \quad E = Q(\neg z, i)$, $F = Q \Rightarrow$
 $F = Q_F$ when $f(x) = x^4 - 2$, involucible in Q[23]
 $\Rightarrow E = Q(\neg z, \neg \neg z, i \neg z, -i \neg z)$ Non-brived polynomial
Observe $(\neg z)^2 + (i \neg z)^2 = 0$. Involutionship between
 $roots$
 $\sigma \in Gal(E/Q) \Rightarrow (\sigma(\neg z))^2 + (\sigma(i \neg z))^2 = \sigma(0) = 0$
 $(\neg z)^2 + (-\neg z)^2 \neq 0$
 $\Rightarrow f \sigma \in Gal(E/Q)$ such that $\sigma(\neg z) = \neg z$

$$\begin{cases} \text{Intum edicate} \quad F \subset K \subset E \end{cases} \iff \begin{cases} \text{Subgroups} \quad H \subset \text{Gal}(E_{f}) \end{pmatrix} \\ K \qquad \longrightarrow \qquad \begin{cases} \sigma \in \text{Gal}(E_{f}) \mid \sigma(k) = k \\ \forall k \in K \end{cases} \\ \forall k \in K \end{cases} \\ \forall k \in K \end{cases}$$

$$\begin{cases} \text{Gal}(E_{f}) \mid \sigma(k) = k \\ \forall k \in K \end{cases} \\ \text{Gal}(E_{f}) \mid \sigma(k) = k \\ \forall k \in K \end{cases}$$

Examples

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}$$

$$\frac{z}{2} + (x) = x^{3} - 2 \Rightarrow \qquad Q_{4} = Q(\sqrt[3]{2}, e^{\frac{z}{3}})$$
$$Q \subset Q(e^{\frac{z}{3}}) \subset Q(e^{\frac{z}{3}})(\sqrt[3]{2})$$
$$Q(\sqrt[3]{2}, e^{\frac{z}{3}})$$

Notice in both cases we can get to splitting tradi-
by successively adjoins with roots of elements.
Conservation II there is a version of the pradvate tormula
the any
$$f(x) \in \mathbb{Q}(x)$$
 all parts can can be constructed
by doing basic algebraic operations and successively taking radicals.

Detindetion A torm *t* radical extensions of \mathbb{Q} is a nested
about of the detensions :
 $\mathbb{Q} \subset K_1 \subset K_2 \subset \cdots \subset K_m$
 $S.t. K_0$
 $K_{i+1} = K_i (ac_i)$ where ac_i is a root of
a polynomial of the form $2^{m_i} - b_i \in K_i [z_i]$.
 $\frac{2^{m_i}}{m_i} \in K_1$ where $m = Tm_i$ for a doing to simplify
 $K_{i+1} = \frac{K_i}{K_{i-1}}$ Galois.
 $\frac{periodical}{K_{i-1}} A \frac{form of the form}{K_{i-1}} A \frac{fordian}{K_{i-1}}$

Suassion A radical , Crfansions as above Fundamental Theorem => $-\dots K_z \supset K_1 \supset Q = K_o$ Km > Km. - - - --<e>< < Gal (Km/ 10... Gal (Km/K2) < Gal (Km/K1) When Gal (Km/Kin) ≅ Gul (Ki/Kin) Gul (Km/Ki) ll Abelian => Simple components of Gal (Km/Q) are cyclic (ie l'or) We call such groups solvable. Modian => Solvable, Solvable # Abelian. e.g. Es] ⊊ Altz ⊊ Sym z Structure theorem For tinite Kachian gro Fast: G Solvable =) All subgroups are solvable and G/H Solvable & HJG. Hence, Q C Q C Km $\Rightarrow Gal(Q * / Q) \cong Gal(K * / Q)$ Gal (Kn/Q1) => Gal (\$ +/) solvable trute grop. Condusion by radicals Of contained I version A => Gal (@+/Q) Solvable => in a toward graduatic tormala vadical extensions $for f(x) \in O(x)$

Said anothin way:
$$7$$
 Version of the
Grid $(P_{1/Q})$ not solvable \Rightarrow graduate tormala
Tow $f(x) \in Q(x)$
Fad: If $f(x) \in Q(x)$, $dy(f(x)) = 5$, invaduale,
has eractly 3 real roots than $Gal(P_{1/Q})$
 \Rightarrow Sym5.
For arangel, $f(x) = x^5 + x^2 - \frac{1}{4}$.
Recall (e) $rights d Sym5$ and
Sym5 $\Rightarrow Z_{1/2Z}$, Atts are simple
Atts
 \Rightarrow Stimple components d Gal $(K_{1/Q})$ are
 $(Z_{1/2Z}, M_{1/2})$.
 $\Rightarrow Gal(K_{1/Q})$ hot solvable
 \Rightarrow There is no version d praductic tormals for
 $digree S$ polynomials $f = Sam te d digree $f = S$
 $Conjecture: Given any Finite group G , $F = Gal(E_{1/Q})$.
is all Finite Symmetries can be realized by
by considuring cereae at polynemials with retronal
 $coefficients$.$$