Field Extensions
A field extension is the containment of one field
in another
$$F \subset E$$
. We write this as E/F .
(This is not to be confused with cosot
notation)
Examples: C/R , R/Q , $F_P(X)/F_P$
 E/F a field extension \Rightarrow $F(X, m \in X)$ a field extension $\forall X, m \in E$
Let E/F be a field extension \Rightarrow
 $f(E, +)$ is an Abelian group
 Z There is a notured F -scalar multiplication on E :
 $F \times E \Rightarrow E$ just multiplication
 $(A, v) \mapsto Xv$ in E

Nice Exercise : Field axions
$$\Rightarrow$$
 E is an F-vector
Detrivition A tield extension E/F is timete
 \Rightarrow E is a Huite dimensional F-vector space
Otherwise we say E/F is an infinite extansion.
 $I \neq E/F$ is finite we write $[E:F] = dim_F(E)$
 T
 $Square brackets$ dimension
 $(host the same)$ in the
 $es inder$ (income
 $es inder$
 E/Q intinite E not obvious
Theorem Let F be a treld and $F(x) \in F(x)$
 $is a$
 $Finite extension A F and $[E:F] = deg(F(x_0))$$

Prot F. field
$$\Rightarrow$$
 F[z] = P.I.D.
 \Rightarrow (H(x)) C F[x] anatum \Rightarrow F(z] (H(z)) a tred.
The containment F C F(x] induces a containment
F C F(x]
(H(x)). Exploitely we relatify a f
with a + (H(x)).
Let $g(x) + (H(x)) \in F(x)$
(H(x))
Evolution property \Rightarrow $g(x) = q(x) H(x) + r(x)$
where $r(x) = O_{F(x)}$ or $deg(r(x)) < deg(H(x))$
 \Rightarrow $g(x) + (H(x)) = r(x) + (H(x))$
 $deg(r(x)) < deg(H(x))$.
 \Rightarrow $r_1(x) - r(x) \in (H(x)) \Rightarrow H(x) | r_1(x) - r(x)$
If $r_1(x) - r(x) \neq O_{F(x)} \Rightarrow deg(r_1(x)) \Rightarrow deg(H(x))$
 \Rightarrow $deg(r(x)) \Rightarrow deg(H(x))$.
 \Rightarrow $r_1(x) - r(x) \neq O_{F(x)} \Rightarrow deg(r_1(x)) \Rightarrow deg(H(x))$
Contradiction. Hence $r_1(x) = r(x)$
 $Assume deg(H(x)) = n$. Hence Tax and
 $g(x) + (H(x)) \in F(x)$
 $f(x) - r(x) = q_0 + a_1x + \dots + a_{n-1}x^{n-1} + (H(x))$
 \Rightarrow $[1+(H(x)), x+f(x), x^2 + (f(x)), \dots, x^{n-1} + (H(x))] \subset F(x)$
 $Hences a bostis Tax $F(x)$
 $Hences a f(x) = deg(H(x))$.
 \Rightarrow $(F(x))_{(H(x)}) = H(x) = deg(H(x))$
 $f(x) = f(x)_{(H(x)}) = deg(H(x)) = deg(H(x))$$

$$\frac{\text{Dethnition}}{\text{Let } E/F} \text{ be a Field extension. Let $x \in E$

$$\frac{\text{algebraic}}{\text{algebraic}} \text{ over } F \iff \exists f(x) \in F(x) \setminus \{0_{F(x)}\}$$

$$s.t. \quad f(x) = O_F$$

$$\frac{\text{If not}}{\text{If we say } x \text{ is } transcendental over } F$$

$$\frac{E/F}{F} \quad \frac{\text{algebraic}}{\text{gebraic}} \text{ extension} \iff \forall x \in E, x \text{ algebraic}$$

$$\frac{E/F}{F} \quad \frac{\text{algebraic}}{\text{formation}} \iff \exists x \in E, x \text{ algebraic}$$$$

Remarks
$$y \propto \in F \Rightarrow \propto algebrarc even F$$

e.g. $f(d) = \chi - \propto$

The converse is not true
$$E_{.g.} \subset \mathbb{P}_{R}, x = i$$

 $i \notin \mathbb{R}$ but $f(i) = 0$ there $f(x) = x^{2} + i$.
 $Z = \mathbb{R}_{(0)}$ is a transcendental extension. $E_{.g.}$

Definition Let
$$E_{f}$$
 be a field extension and
 $\propto \in E$ be algebraic over F . The minimul
polynomial $A \propto new F$ is $F(x) \in F(x) \setminus \{0_{F(x)}\}$
of minimal degree such that
 $1 \quad F(x) \quad measic$
 $2 \quad F(\alpha) = 0_{F}$

=>
$$f(x) [g(x)$$

B/ By definition $f(x) \neq 0_{F(x)}$ and $f(x) \notin (F(x))^{*}$.
 $f(x) = a(x)b(x)$, $a(x)$, $b(x) \in F(x]$
=> $a(x)b(x) = 0_{F}$ => $eit_{LL} a(x) = 0_{F} a(x) = 0_{F}$
 $a(x) = 0 \Rightarrow f(x) [a(x) => b(x) \in (F(x))^{*}$
 $b(x) = 0 \Rightarrow f(x) [b(x) => a(x) \in F[x])^{*}$
 $=> f(x) iwe dworble$

Theorem let
$$E_{fg}$$
 be a tield extension and $\alpha \in E$
be algebraic with minimal polynomial $f(x) \in F(\infty)$
then the homomorphism $\beta: F[x] \rightarrow E$
 $g(x) \mapsto g(\infty)$
induces an isomorphism $F(x) \cong F[\alpha]$
Hence $F[\alpha] = F(\alpha)$ and $[F(\alpha):F] = deg(F(\alpha))$
 $p(x) \in F[x]$

Proof Recall
$$F[\alpha] = \{g(\alpha) \mid g(\alpha) \in F[\alpha]\}$$

Hence by 1st Isomorphism theorem
 $F[\alpha] \cong F[\alpha] \subset E$
key

$$ker \phi = \left\{ g(x) \in F(x] \mid g(\alpha) = 0_{+} \right\}$$

$$g(x) = 0_{+} \iff f(\alpha) \mid g(x) \implies ker \phi = (f(x))$$

$$in \quad F(x)$$

$$=) \quad F(x) \iff F(x) \subset E$$

$$(f(x)) \iff F(x) \subset E$$

$$f(x) \quad inverduce bh = inverse (f(x)) \subset F[x] \quad maximum (f(x)) = F[x] \quad a \quad field = inverse (f(x)) = f(x) = f(x)$$

$$= inverse (f(x)) = f(x) (f(x)) = F[x]$$

$$and \quad [F(x):F] = [F[x]/(f(x)):F] = deg(f(x))$$

Remark It E/F is a Hold extension and $\alpha_{1,11}, \alpha_{n} \in E$ are algebraic $\Rightarrow F(\alpha_{1,11}, \alpha_{n}) = F[\alpha_{1,11}, \alpha_{n}]$ However we cannot easily express $F[\alpha_{1,11}, \alpha_{n}]$ as a quotient ring.

E