MATH 54 MIDTERM 2 (PRACTICE 3) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and Student ID: \qquad

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Find a basis for the subspace of all vectors $\left(\begin{array}{c}a-2 b+5 c \\ 2 a+5 b-8 c \\ -a-4 b+7 c \\ 3 a+b+c\end{array}\right)$ in \mathbb{R}^{4}.

Solution:

$$
\begin{aligned}
& \left\{(\begin{array} { c }
{ a - 2 b + 5 c } \\
{ 2 a + 5 b - 5 c } \\
{ - a - 4 b + 7 c } \\
{ 3 a + b + c }
\end{array}) \left\{=\operatorname{Span}\left(\left(\begin{array}{c}
1 \\
2 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
-2 \\
5 \\
-4 \\
1
\end{array}\right),\left(\begin{array}{c}
5 \\
7 \\
7
\end{array}\right)\right)\right.\right. \\
& \left(\begin{array}{ccc}
1 & -2 & 5 \\
2 & 5 & -8 \\
-1 & -4 & 7 \\
3 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & -2 & 5 \\
0 & 9 & -18 \\
0 & -6 & 12 \\
0 & 7 & -14
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
\pi & -2 & 5 \\
0 & 11 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \Rightarrow\left[\left(\begin{array}{c}
1 \\
2 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
-2 \\
5 \\
-4 \\
1
\end{array}\right)\right\} \text { is a basis }
\end{aligned}
$$

(b) What dimension is this subspace?

Solution:
The basis has size z so the dimension is 2 .
2. (a) Let $A=\left(\underline{\mathbf{a}}_{1}, \underline{a}_{2}, \underline{\mathbf{a}}_{3}\right)$ be a 4×3 matrix with $A^{T} A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & -1 \\ 3 & -1 & 9\end{array}\right)$. Calculate

$$
\left\|\underline{\mathbf{a}}_{1}+\underline{\mathbf{a}}_{2}+\underline{\mathbf{a}}_{3}\right\| \text { and }
$$

Solution:

$$
\begin{aligned}
& \left(A^{\top} A\right)_{i j}=\underline{a}_{i} \cdot \underline{a} j \\
& \left\|\underline{a}_{1}+\underline{a}_{2}+\underline{a}_{3}\right\|^{2} \\
& =\left(\underline{a}_{1}+\underline{a}_{2}+\underline{a}_{3}\right) \cdot\left(\underline{a}_{1}+\underline{a}_{2}+\underline{a}_{3}\right) \\
& \\
& =\underline{a}_{1} \cdot \underline{a}_{1}+\underline{a}_{2} \cdot \underline{a}_{2}+\underline{a}_{3} \cdot \underline{a}_{3}+2 \underline{a}_{1} \cdot \underline{a}_{2}+2 \underline{a}_{1} \cdot \underline{a}_{3}+2 \underline{a}_{2} \cdot a_{3} \\
& \\
& =1+4+9+2 \times 2+2 \times 3+2 \times(-1) \\
& \\
& =22
\end{aligned}
$$

$$
\Rightarrow \quad\left\|a_{1}+\underline{a}_{2}+\underline{a}_{3}\right\|=\sqrt{22}
$$

(b) Does there exist a 4×3 matrix B such that $B^{T} B=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & -1 & 3 \\ 1 & -1 & 9\end{array}\right)$. Justify your answer.

No. Fr e two reasons.

$$
\text { I/ } b_{3} \cdot b_{2}=-1<0 \text { This is impossibh. }
$$

$2 \underline{b}_{2} \cdot \underline{b}_{3}=3 \neq-1=\underline{b}_{3} \cdot \underline{b_{2}}$ This is impossicer.
3. (25 points) Let V be a vector space with basis $B=\left\{\underline{\mathbf{b}}_{1}, \underline{\mathbf{b}}_{2}, \underline{\mathbf{b}}_{3}\right\}$. Let T be the linear transformation from V to V such that

$$
T\left(\underline{\mathbf{b}}_{1}\right)=4 \underline{\mathbf{b}}_{1}+\underline{\mathbf{b}}_{3}, T\left(\underline{\mathbf{b}}_{2}\right)=4 \underline{\mathbf{b}}_{2}+\underline{\mathbf{b}}_{3} T\left(\underline{\mathbf{b}}_{3}\right)=-2 \underline{\mathbf{b}}_{3} .
$$

Find all possible λ such that there exists non-zero $\underline{\mathbf{v}}$ in V such that $T(\underline{\mathbf{v}})=\lambda \underline{\mathbf{v}}$. Solution:

$$
\begin{aligned}
& A_{\beta, \beta}=\left(\left(T\left(\underline{b}_{1}\right)\right)_{\beta}\left(T\left(\underline{b}_{2}\right)_{\beta}\left(T\left(\underline{b}_{3}\right)\right)_{\beta}\right)\right. \\
& =\left(\left(4 b_{1}+b_{3}\right)_{B}\left(4 \underline{b}_{2}+\underline{b}_{3}\right)_{B}\left(-2 \underline{b}_{3}\right)_{\beta}\right) \\
& =\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
1 & 1 & -2
\end{array}\right) \\
& \underline{v} \neq 0 \quad(\underline{v})_{B} \neq 0 \\
& T(\underline{v})=\gamma \underline{v} \Leftrightarrow A_{B_{i B}}(\underline{v})_{\beta}=\lambda(\underline{v})_{B} \Leftrightarrow y_{\beta} \text { an er } \\
& \operatorname{det}\left(A_{B, \beta}-x I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
4-x & 0 & 0 \\
0 & 4-x & 0 \\
1 & 1 & -2-x
\end{array}\right) \\
& =(4-x)(4-x)(-2-x)
\end{aligned}
$$

$\Rightarrow T(\underline{v})=\lambda \underline{v}$ has nou-zero solution $\Leftrightarrow \lambda=4 \mathrm{n}-2$.
4. Let $A=\left(\begin{array}{cc}7 & 4 \\ -3 & -1\end{array}\right)$. Given an explicit description of A^{k} for any positive integer k. Solution:

$$
\operatorname{det}\left(A-x 士_{2}\right)=(7-x)(-1-x)+12=x^{2}-6 x+5=(x-1)(x-5)
$$

\Rightarrow I and S are only eigenvalues

$$
\begin{aligned}
& A-S I_{2}=\left(\begin{array}{cc}
2 & 4 \\
-3 & -6
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{Nul}\left(A-S I_{2}\right)=\left\{\binom{-2 x_{2}}{x_{2}}\right\}=\operatorname{Span}\left(\binom{-2}{1}\right) \\
& A-1 \cdot I_{2}=\left(\begin{array}{cc}
6 & 4 \\
-3 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{Nal}\left(A-1 \cdot I_{2}\right)=\left\{\binom{-2 / 3 x_{2}}{x_{2}}\right\}=\operatorname{Span}\left(\binom{-2 / 3}{1}\right) \\
& =\operatorname{Span}\left(\binom{-2}{3}\right) \\
& \Rightarrow \quad\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)^{-1}\left(\begin{array}{cc}
7 & 4 \\
-3 & -1
\end{array}\right)\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right) \\
& \Rightarrow \quad\left(\begin{array}{cc}
7 & 4 \\
-3 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)^{-1} \\
& \Rightarrow \quad\left(\begin{array}{cc}
74 \\
-3 & -1
\end{array}\right)^{k}=\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
s^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & -2 \\
1 & 3
\end{array}\right)^{-1}
\end{aligned}
$$

5. (25 points) (a) Let $\mathbb{P}_{2}(\mathbb{R})$ be the vector space of polynomials of degree at most 2 with real coefficients. Let $B=\left\{1+x, 1, x^{2}-1\right\}$ and $C=\left\{1+x+x^{2}, 2 x, 1\right\}$. Calculate the matrix $P_{C \leftarrow B}$.
Solution:

$$
\begin{aligned}
& P_{c \leftarrow \beta}=\left(\left(b_{1}\right)_{c}\left(b_{2}\right)_{c}\left(\underline{b}_{3}\right)_{c}\right)=\left((1+x)_{c}(1)_{c}\left(x^{2}-1\right)_{c}\right) \\
& 1+x=0\left(1+x+x^{2}\right)+\frac{1}{2}(2 x)+1 \cdot 1 \Rightarrow(1+x)_{c}=\left(\begin{array}{c}
0 \\
1 / 2 \\
1
\end{array}\right) \\
& 1=0\left(1+x+x^{2}\right)+0 \cdot(2 x)+1 \cdot 1 \Rightarrow(1)_{c}=\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) \\
& x^{2}-1=1\left(1+x+x^{2}\right)+(-1 / 2) \cdot(2 x)+(-2) \cdot 1 \Rightarrow\left(x^{2}-1\right)_{c}=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
-2
\end{array}\right) \\
& \Rightarrow \quad P_{c \in \beta}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 / 2 \\
1 & 1 & -2
\end{array}\right)
\end{aligned}
$$

(b) Does there exist a non-zero polynomial $p(x)$ such that $(p(x))_{B}=(p(x))_{C}$? Solution:

$$
p(x) \text { nou-zers } \quad(p(x))_{\beta} \text { non-zero }
$$

$$
(p(x))_{\beta}=(p(x))_{C} \Leftrightarrow P_{c \in \beta}(p(\underline{x}))_{\beta}=(p(x))_{\beta} \Leftrightarrow \underset{\text { eigenvalue }}{1}
$$

$$
\left|\begin{array}{ccc}
-1 & 0 & 1 \\
1 / 2 & -1 & -1 / 2 \\
1 & 1 & -3
\end{array}\right|=-1\left((-1)(-3)+\frac{1}{2}\right)+1(1 / 2+1)
$$

$$
=\frac{-7}{2}+\frac{3}{2}=-2 \neq 0
$$

\Rightarrow No there does not exist such a $p(x)$.

