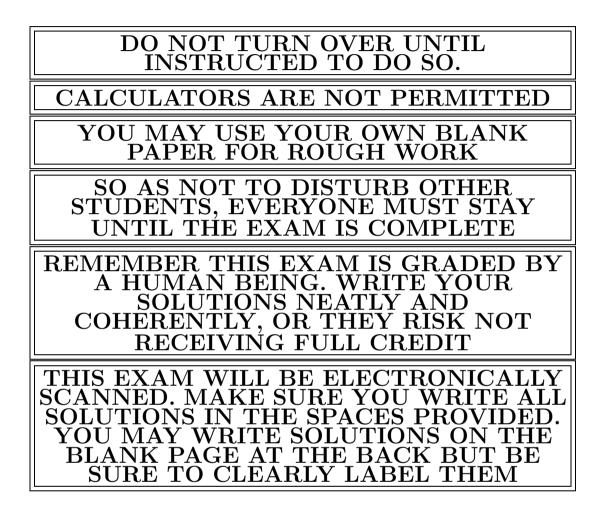
MATH 54 MIDTERM 2 (PRACTICE 2) PROFESSOR PAULIN



Name and Student ID: _____

GSI's name: _____

Math 54

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let $\mathbb{P}_3(\mathbb{R})$ be the vector space of polynomials of degree at most 3 with real coefficients. Calculate the dimension of the subspace

=) dim (Spon
$$\{1+x-x^2, 2+x^2+x^3, 5-2x-x^3, 4-3x+x^2-x^3\} = 3$$

(b) Is $U = \mathbb{P}_3(\mathbb{R})$? Justify your answer. Solution:

 $dim(P_3(\mathbb{R})) = 4$, $dim(u) = 3 \implies U \neq P_3(\mathbb{R})$

PLEASE TURN OVER

2. (25 points) (a) You are given a linear system with 5 equations in 6 unknowns. If the corresponding homogeneous linear system has a solution set spanned by two linearly independent vectors, is it true that the original linear system is guaranteed to have a solution? If it is not possible, give an explicit example of such a system.
Solution:

A - 5 x 6 materix

(b) What about if we instead assume that the corresponding homogeneous linear system solution set is spanned by one non-zero vector? Justify your answer.Solution:

$$T \neq duni(Nul(A)) = | \Rightarrow duni(Col(A)) = 6 - 1 = 5$$

=) $(ol(A) = \mathbb{R}^{S} \Rightarrow A \times = b$ always has a solution.

PLEASE TURN OVER

3. (25 points) Let
$$A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
 and $B = \{ \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \}$. Find a basis C such that

$$A_{B,C} = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}.$$

Solution:

$$\begin{split} A_{\mathcal{B},c} &:= \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \right) \right) \right) \\ &= \left(\left(\left(\left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \right) \right) \right) \\ A_{\mathcal{B},c} &= \left(\left(\left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \right) \right) \right) \Rightarrow \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \right) \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \right) \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \right) \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(\left(A_{\frac{b}{2}} \right)_{c} \right) \\ &= \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right) \\ &= \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A_{\frac{b}{2}} \right) \\ &= \left(\left(A_{\frac{b}{2}} \right)_{c} \left(A$$

4. (a) Give a precise statement of what it means for a square matrix A to be diagonalizable. Solution:

A diagondizable (=) There exists P an vivertible matrix such that P'AP is diagonal (=) There exists a basis at eigenvectors at A

(b) Is the matrix
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 diagonalizable? Justify your answer.

Solution:

A upper triangular =>
$$1/3/2$$
 are all eigenvalues of A
det $(A - zT_4) = (1-z)(3-z)(2-z)^2 =>$ algebraic maltiplicity
 $iT Z is Z$
 $A - 2T_4 = \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

=> duin (Z-eigenspace) = 1 < Z = algebraic multiplicity of Z

PLEASE TURN OVER

5. Let W be the span of the vectors $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}$ in \mathbb{R}^4 . Find an orthogonal basis for W^{\perp} . What is the minimum distance between $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$ and W?

Solution:

$$W = C_{0l} \left(\begin{pmatrix} l & 0 \\ 0 & 0 \\ 0 & -l \end{pmatrix} \right) = W^{L} = NM \left(\begin{pmatrix} l & 0 & 1 & 0 \\ 0 & 0 & l - l \end{pmatrix} \right)$$
$$\begin{pmatrix} l & 0 & 0 & 1 \\ 0 & 0 & l - l \end{pmatrix} \Rightarrow NM \left(\begin{pmatrix} l & 0 & 10 \\ 0 & 0 & l - l \end{pmatrix} \right) = \left\{ \begin{pmatrix} -\chi_{q} \\ \chi_{q} \\ \chi_{q} \end{pmatrix} \right\}$$
$$= S_{pary} \left(\begin{pmatrix} 0 \\ l \\ 0 \end{pmatrix}, \begin{pmatrix} -l \\ 0 \\ l \\ l \end{pmatrix} \right)$$
$$Ordingonal baris$$
The WL

END OF EXAM