MATH 54 MIDTERM 2 (PRACTICE 2) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and Student ID: \qquad

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let $\mathbb{P}_{3}(\mathbb{R})$ be the vector space of polynomials of degree at most 3 with real coefficients. Calculate the dimension of the subspace

$$
U=\operatorname{Span}\left(1+x-x^{2}, 2+x^{2}+x^{3}, 5-2 x-x^{3}, 4-3 x+x^{2}-x^{3}\right\}
$$

Solution:
standard

$$
\begin{aligned}
& \text { Coordnictes } \\
& \left.\left\{1+x-x^{2}, 2+x^{2}+x^{3}, 5-2 x-x^{3}, 4-3 x+x^{2}-x^{3}\right\} \longleftrightarrow \longleftrightarrow\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
5 \\
-2 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
4 \\
-3 \\
1 \\
-1
\end{array}\right)\right\} \\
& \left(\begin{array}{cccc}
1 & 2 & 5 & 4 \\
1 & 0 & -2 & -3 \\
-1 & 1 & 0 & 1 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 5 & 4 \\
0 & -2 & -7 & -7 \\
0 & 3 & 5 & 5 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 5 & 4 \\
0 & 1 & -1 & -1 \\
0 & 3 & 5 & 5 \\
0 & -2 & -7 & -7
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\pi & 2 & 5 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & 18 & 8 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{dim}\left(\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
5 \\
-2 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
4 \\
-3 \\
1 \\
-1
\end{array}\right)\right\}\right)=3
\end{aligned}
$$

$\Rightarrow \quad \operatorname{dim}\left(\operatorname{Spom}\left\{1+x-x^{2}, 2+x^{2}+x^{3}, 5-2 x-x^{3}, 4-3 x+x^{2}-x^{3}\right\} \int=3\right.$
(b) Is $U=\mathbb{P}_{3}(\mathbb{R})$? Justify your answer.

Solution:
$\operatorname{dimi}\left(\mathbb{P}_{3}(\mathbb{R})\right)=4, \operatorname{din}(U)=3 \Rightarrow U \neq \mathbb{P}_{3}(\mathbb{R})$
2. (25 points) (a) You are given a linear system with 5 equations in 6 unknowns. If the corresponding homogeneous linear system has a solution set spanned by two linearly independent vectors, is it true that the original linear system is guaranteed to have a solution? If it is not possible, give an explicit example of such a system.
Solution:

$$
\begin{aligned}
& A-5 \times 6 \text { matrix } \\
& \operatorname{dim}(\operatorname{Nal}(A))=2 \\
& 6=\operatorname{dmm}(N \operatorname{Nul}(A))+\operatorname{dini}\left(C_{0}((A)) \Rightarrow \operatorname{dini}\left(C_{0}(C A)\right)=6-2=4<5\right. \\
& \Rightarrow \operatorname{Col}(A) \neq \mathbb{R}^{5} \Rightarrow I \in \text { is possible there is no solution } \\
& \text { Example : } \\
& \left.\qquad \left\lvert\, \begin{array}{llllll|l}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right.\right)
\end{aligned}
$$

(b) What about if we instead assume that the corresponding homogeneous linear system solution set is spanned by one non-zero vector? Justify your answer. Solution:

If $\operatorname{dini}(N a l(A))=1 \Rightarrow \operatorname{dimi}(\operatorname{Col}(4))=6-1=5$

$$
\Rightarrow \quad \operatorname{Co}\left((A)=\mathbb{R}^{s} \Rightarrow \quad A \underline{x}=\underline{b}\right. \text { always has a solution. }
$$

3. (25 points) Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$ and $B=\left\{\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$. Find a basis C such that

$$
A_{B, C}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \Delta_{B, C}:=\left(\left(A \underline{b}_{1}\right)_{C}\left(A \underline{b}_{2}\right)_{c}\left(A b_{3}\right)_{c}\left(A \underline{b}_{4}\right)_{c}\right) \\
& =\left(\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right)_{c}\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right)_{c}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)_{c}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \vdots \text {) }=s_{2} \\
& \binom{\circ}{\vdots}=-s \text {. }
\end{aligned}
$$

4. (a) Give a precise statement of what it means for a square matrix A to be diagonalizable. Solution:

A diagondizable \Leftrightarrow There exist P an niventible matrix such that $P^{-1} A P$ is diagonal
\Leftrightarrow There exists a basis of eigenvectors of A
(b) Is the matrix $A=\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$ diagonalizable? Justify your answer.

Solution:
A upper triangular $\Rightarrow 1,3,2$ are all eigenvalues at A $\operatorname{det}\left(A-x T_{4}\right)=(1-x)(3-x)(2-x)^{2} \Rightarrow$ algebraic multiplicity

$$
A-2 I_{4}=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
0 & 11 & 0 & 0 \\
0 & 0 & 0 & 11 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\Rightarrow \operatorname{din}(Z-e$-egenspaa) $=1<2=\operatorname{algatraic}$ of 2
$\Rightarrow A$ is not diagonalizable.
5. Let W be the span of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)$ in \mathbb{R}^{4}. Find an orthogonal basis for W^{\perp}. What is the minimum distance between $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and W ?
Solution:

$$
\begin{aligned}
& W=\operatorname{Col}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right)\right) \Rightarrow W^{\perp}=\operatorname{Nal}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & -1
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \Rightarrow \operatorname{Nul}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)=\left\{\left(\begin{array}{c}
-x_{4} \\
x_{2} \\
x_{4} \\
x_{4}
\end{array}\right)\right\} \\
& =\operatorname{Span}(\underbrace{\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)}) \\
& \text { Orthogonal paris } \\
& \text { ow } w^{\perp}
\end{aligned}
$$

Min distance between

$$
\begin{aligned}
& =\| \text { Proc }_{\omega^{+}}\binom{\vdots}{\vdots} \|
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|1 \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+0\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\|=1
\end{aligned}
$$

