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Math 54 Midterm 2 (Practice 2)

This exam consists of 5 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Let P3(R) be the vector space of polynomials of degree at most 3 with
real coefficients. Calculate the dimension of the subspace

U = Span(1 + x− x2, 2 + x2 + x3, 5− 2x− x3, 4− 3x+ x2 − x3}

Solution:

(b) Is U = P3(R)? Justify your answer.

Solution:

PLEASE TURN OVER
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2. (25 points) (a) You are given a linear system with 5 equations in 6 unknowns. If the
corresponding homogeneous linear system has a solution set spanned by two linearly
independent vectors, is it true that the original linear system is guaranteed to have
a solution? If it is not possible, give an explicit example of such a system.

Solution:

(b) What about if we instead assume that the corresponding homogeneous linear system
solution set is spanned by one non-zero vector? Justify your answer.

Solution:

PLEASE TURN OVER



Math 54 Midterm 2 (Practice 2), Page 3 of 5

3. (25 points) Let A =

⎛

⎜⎜⎝

1 0 0 2
0 1 1 0
0 0 1 0
1 0 0 1

⎞

⎟⎟⎠ and B = {

⎛

⎜⎜⎝

0
−1
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠}. Find a

basis C such that

AB,C =

⎛

⎜⎜⎝

0 0 0 −1
0 0 1 0
1 1 0 0
2 0 0 0

⎞

⎟⎟⎠ .

Solution:

PLEASE TURN OVER
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4. (a) Give a precise statement of what it means for a square matrix A to be diagonalizable.

Solution:

(b) Is the matrix A =

⎛

⎜⎜⎝

1 2 0 0
0 3 0 0
0 0 2 1
0 0 0 2

⎞

⎟⎟⎠ diagonalizable? Justify your answer.

Solution:

PLEASE TURN OVER
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5. Let W be the span of the vectors

⎛

⎜⎜⎝

1
0
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
1
−1

⎞

⎟⎟⎠ in R4. Find an orthogonal basis for W⊥.

What is the minimum distance between

⎛

⎜⎜⎝

1
1
1
0

⎞

⎟⎟⎠ and W?

Solution:

END OF EXAM


