MATH 54 MIDTERM 2 (PRACTICE 1) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and Student ID: \qquad

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let V be a vector space and $U \subset V$ be a subset. Give a precise definition of what it means for U to be a subspace.
Solution:

2 If $\underline{x}, \underline{y}$ are in u than $\underline{x}+\underline{y}$ is in U
3 If x in U and λ in \mathbb{R} then $\lambda \underline{x}$ is in U
(b) If $V=C[0,1]$ is the vector space of continuous real-values functions on $[0,1]$ is it true that

$$
U=\{f(x) \text { in } C[0,1], \text { such that } f(0) \text { and } f(1) \text { are integers }\}
$$

is a subspace? Justify your answer.
Solution:
U is not a subspaa. For example $f(x)=x$ is in
u because $f(0)=0$ and $f(1)=1$. Haweren $\frac{1}{2} 7(x)$
is not in U as $f(1)=\frac{1}{2}$.
\uparrow
Not an integer
2. (25 points) Find a basis for the kernel of the following linear transformation:

$$
\begin{array}{rll}
T: \mathbb{P}_{3}(\mathbb{R}) & \rightarrow \mathbb{R}^{3} \\
p(x) & \mapsto & \left(\begin{array}{c}
p(1) \\
p^{\prime}(1) \\
p^{\prime \prime}(1)
\end{array}\right)
\end{array}
$$

Determine the rank of T. Be sure to carefully justify your answers.
Solution:
$\operatorname{Ker}(T)=\left\{p(x)\right.$ in $P_{3}(\mathbb{R})$ such that $\left.T(p(x))=0\right\}$ $=\left\{p(x)\right.$ is $\mathbb{P}_{3}(\mathbb{R})$ such that $\left.p(1)=0, p^{\prime}(1)=0, p^{\prime \prime}(1)=0\right\}$

Let $p(x)=a+b x+c x^{2}+d x^{3}$
$p(1)=a+b+c \leftarrow d$
$p^{\prime}(1)=6+2 c+3 d$
$p^{\prime \prime}(1)=2 c+6 d$
$\left(\begin{array}{llll|l}1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 2 & 6 & 0\end{array}\right) \rightarrow\left(\begin{array}{llll|l}1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 3 & 0\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}1 & 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 3 & 0\end{array}\right)$

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 & 0 \\
0 & 0 & 1 & 3 & 0
\end{array}\right)
$$

$\Rightarrow \quad a=-d \quad p \quad b(x)=-d+3 d x-3 d x^{2}+d x^{3}$
$\begin{aligned} & b=3 d \\ & c=-3 d\end{aligned} \quad \Rightarrow \operatorname{Ken}(T)=\operatorname{Span}(\underbrace{-1+3 x-3 x^{2}+x^{3}}_{\text {Bani Hon Ken }(t)})$
$\operatorname{dim}\left(\mathbb{P}_{3}(\mathbb{R})\right)=\operatorname{dini}(\operatorname{Kan}(T))+\operatorname{din}(R a y e(T)$
$\Rightarrow \quad 4=1+\operatorname{Rank}(T) \Rightarrow \operatorname{Rank}(T)=3$
3. Let V and W be vector spaces with bases $B=\left\{\underline{\mathbf{b}}_{1}, \underline{\mathbf{b}}_{2}, \underline{\mathbf{b}}_{3}\right\}$ and $C=\left\{\underline{\mathbf{c}}_{1}, \underline{\mathbf{c}}_{2}, \underline{\mathbf{c}}_{3}, \underline{\mathbf{c}}_{4}\right\}$ respectively. Let T be the linear transformation from V to W such that

$$
T\left(\underline{\mathbf{b}}_{1}\right)=\underline{\mathbf{c}}_{1}-3 \underline{\mathbf{c}}_{4}, T\left(\underline{\mathbf{b}}_{2}\right)=-\underline{\mathbf{c}}_{3}+2 \underline{\mathbf{c}}_{2}, T\left(\underline{\mathbf{b}}_{3}\right)=\underline{\mathbf{c}}_{1}+\underline{\mathbf{c}}_{2}+\underline{\mathbf{c}}_{3} .
$$

Determine the nullity of T. Is T one-to-one?
Solution:

$$
\begin{aligned}
& A_{B_{1} c}\left.=\left(\left(T \underline{b}_{1}\right)\right)_{c}\left(T\left(\underline{b}_{2}\right)\right)_{c}\left(T\left(\underline{b}_{3}\right)\right)_{c}\right) \\
&=\left(\left(\underline{c}_{1}-3 \underline{s}_{4}\right)_{c}\left(-\underline{c}_{3}+2 \underline{c}_{2}\right)_{c}\left(\underline{s}_{1}+\underline{c}_{2}+\underline{c}_{3}\right)_{c}\right) \\
&=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & -1 & 1 \\
-3 & 0 & 0
\end{array}\right) \\
&\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & -1 & 1 \\
-3 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & -1 & 1 \\
0 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & \frac{3}{0} \\
0 & 0
\end{array}\right) \\
& \text { Nullity }(T)=\operatorname{dimi}(\operatorname{Ker}(T))=\operatorname{dim}\left(\operatorname{Nu}\left(A_{B, C}\right)\right)=0
\end{aligned}
$$

No free columns \Rightarrow Columns of $A_{\beta, C}$ are $L . I$
$\Rightarrow T$ is one-to-one
4. Let $A=\left(\begin{array}{cccc}5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$. $P^{-1} A P$ is diagonal. If so, find such a P. If not, justify why.
Solution:
$\operatorname{det}\left(A-x I_{4}\right)=(5-x)(3-x)(2-x)^{2} \Rightarrow 5,3,2$ are all eigenvalue

$$
\underset{\text { algebraic }}{\text { multiplicity }}=1 \Rightarrow \operatorname{dmi}(S \text { - eigeagpace) }=1
$$

of 5

$$
A-S I_{4}=\left(\begin{array}{cccc}
0 & -3 & 0 & 9 \\
0 & -2 & 1 & -2 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \text { basis fou } S \text {-eisenpaa }
$$

algebraic $=1 \Rightarrow$ di (3-eigengpace) $=1$

$$
\Rightarrow 2 \text {-eigenpace }=\left\{\left(\begin{array}{c}
-x_{3}-x_{4} \\
-x_{3}+2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)\right\}=\underbrace{\operatorname{span}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
0 \\
i
\end{array}\right)}_{\text {Bars }}
$$

$\Rightarrow 4$ diagonalizable and \ddagger a $P=\left(\begin{array}{cccc}1 & 3 & -1 & -1 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 0\end{array}\right)$ than

$$
P^{-1} A P=\left(\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& \text { as } 3 \\
& A-3 I_{4}=\left(\begin{array}{cccc}
2 & -3 & 0 & 9 \\
0 & 0 & 1 & -2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
2 & -3 & 0 & 9 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{c}
3 \\
2 \\
0 \\
0
\end{array}\right) \text { bani } 3 \text { _wm } \\
& A-2 I_{4}=\left(\begin{array}{cccc}
3 & -3 & 0 & 9 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 0 & 3 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

5. Let W be the span of the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ in \mathbb{R}^{4}. Calculate $\operatorname{Proj}_{W}\left(\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right)$ and $\operatorname{Proj}_{W^{\perp}}\left(\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right) ?$
$\begin{array}{ll}\boldsymbol{n}_{1}^{\prime} & \underline{x}_{2}^{\prime} \\ \underline{x}_{1} & \underline{x}_{2}\end{array}$

Solution:

$$
\begin{aligned}
& \underline{v}_{1}=\underline{x}_{1} \\
& \underline{v}_{2}=\underline{x_{2}}-\frac{\underline{v}_{1} \cdot \underline{x}_{2}}{v_{1} \cdot \underline{v}_{1}} \underline{v_{1}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 \\
0
\end{array}\right), ~
\end{aligned}
$$

$$
\Rightarrow \quad W=\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right)\right)
$$

$$
=\frac{2}{6} \cdot\left(\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 3 \\
1 / 3 \\
2 / 3 \\
0
\end{array}\right)
$$

$\operatorname{Projw}+\left(\begin{array}{c}1 \\ \frac{1}{2} \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{c}-1 / 3 \\ 1 / 3 \\ 2 / 3 \\ 0\end{array}\right)=\left(\begin{array}{c}4 / 3 \\ -4 / 3 \\ 4 / 3 \\ 1\end{array}\right)$

