MATH 54 MIDTERM 1 (PRACTICE 3) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.	
CALCULATORS ARE NOT PERMITTED	
YOU MAY USE YOUR OWN BLANK PAPER FOR ROUGH WORK	
SO AS NOT TO DISTURB OTHER STUDENTS, EVERYONE MUST STAY UNTIL THE EXAM IS COMPLETE	
REMEMBER THIS EXAM IS GRADED B A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT	
THIS	
S	
BLANK PAGE AT THE BACK BUT BE	

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Express the vector $\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$ as a linear combination of the vectors

$$
\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{llll|l}
0 & 2 & 2 & 0 & -2 \\
1 & 3 & 1 & 1 & 0 \\
1 & 4 & 2 & 2 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll|c}
1 & 3 & 1 & 1 & 0 \\
0 & 2 & 2 & 0 & -2 \\
1 & 4 & 2 & 2 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll|c}
1 & 3 & 1 & 1 & 0 \\
0 & 2 & 2 & 0 & -2 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll|l}
1 & 3 & 1 & 0 & -2 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \leftarrow\left(\begin{array}{llll|l}
1 & 3 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \leftarrow\left(\begin{array}{llll|c}
1 & 3 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0
\end{array}\right) \quad \Rightarrow \begin{array}{l}
x_{1}-2 x_{3}=1 \\
x_{2}+x_{3}=-1 \\
x_{4}=2
\end{array} \Rightarrow \begin{array}{l}
x_{1}=1+2 x_{3} \\
x_{2}=-1-x_{3} \\
x_{3} \text { free } \\
x_{4}=2
\end{array} \\
& x_{3}=0 \Rightarrow\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+(-1)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+2\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
\end{aligned}
$$

(b) How many possible ways of doing this are there? Justify your answer.

Solution:
Thane are infinitely many ways to $d_{0} t$ lino as x_{3} is a Tree variable.
2. (25 points) List the possible forms of all 3×3 reduced echelon matrices. Label the ones row equivalent to matrices whose column vectors are linearly dependent. Label the ones row equivalent to matrices whose column vectors span \mathbb{R}^{3}.
Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\text { LtD. }
\end{array}\right) \quad\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & \\
0 & 0 & 0 \\
\text { LtD. }
\end{array}\right)
\end{array}\right. \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { LtD. LtD. }
\end{aligned}
$$

3. Calculate the determinant of $\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & -1 & 2 & 0 \\ 2 & 1 & 3 & 4 \\ 3 & 1 & 2 & 5\end{array}\right)$.

Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & -1 & 2 & 0 \\
2 & 1 & 3 & 4 \\
3 & 1 & 2 & 5
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -2 & 2 & -1 \\
0 & -1 & 3 & 2 \\
0 & -2 & 2 & 2
\end{array}\right) \xrightarrow{\begin{array}{c}
\text { Switch } \\
2^{\text {nad }}
\end{array} 3^{\text {nad }}}\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -1 & 3 & 2 \\
0 & -2 & 2 & -1 \\
0 & -2 & 2 & 2
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -1 & 3 & 2 \\
0 & 0 & -4 & -5 \\
0 & 0 & 0 & 3
\end{array}\right) \leftarrow\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -1 & 3 & 2 \\
0 & 0 & -4 & -5 \\
0 & 0 & -4 & -2
\end{array}\right) \\
& \downarrow \\
& \Rightarrow\left|\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & -1 & 2 & 0 \\
2 & 0 & 3 & 4 \\
3 & 1 & 2 & 5
\end{array}\right|=(-1) \cdot 1 \cdot-1 \cdot-4 \cdot 3=-12
\end{aligned}
$$

4. (25 points) (a) Is it possible for a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ to be one-to one? Justify your answer.
Solution:
It is nat possubh for $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ unseam to be one-to-oue.
T linear $\Rightarrow T=T_{A}$ for some A, a 3×4 matrix.
T_{A} oue-to-one \Leftrightarrow Reduced A has piss position in every column

However A $3 \times 4 \Rightarrow$ tE most 3 pivot position.
There are 4 columns so there cannot be a pivot in every column.
(b) Give an example of a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ which is onto. Solution:

$$
T=T_{A} \text { where } A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$$
T
$$

In reduced form with picot position in every vow $\Rightarrow T_{A}$ onto.
5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}+3 x_{3}+x_{4} \\
-x_{1}+x_{2} \\
x_{3}+x_{4} \\
x_{1}-x_{4}
\end{array}\right) .
$$

Give an example of $\underline{\mathbf{b}}$ in \mathbb{R}^{4} not in the range of T ? Justify your answer.
Solution:

$$
T(\underline{x})=\underbrace{\left(\begin{array}{cccc}
2 & 0 & 3 & 1 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & -1
\end{array}\right)}_{A} \underline{x}
$$

$\underline{6}$ not in rage of $T \Leftrightarrow$ (Alb) in consistent

$$
\begin{aligned}
& \left|\begin{array}{cccc|c}
2 & 0 & 3 & 1 & b_{1} \\
-1 & 1 & 0 & 0 & b_{2} \\
0 & 0 & 1 & 1 & b_{3} \\
1 & 0 & 0 & -1 & b_{4}
\end{array}\right| \\
& \left.\left\lvert\, \begin{array}{cccc|c}
1 & 0 & 0 & -1 & b_{4} \\
0 & 1 & 0 & -1 & b_{2}+b_{4} \\
0 & 0 & 1 & 1 & b_{3} \\
0 & 0 & 0 & 0 & b_{1}-2 b_{4}-3 b_{3}
\end{array}\right.\right)
\end{aligned} \longleftrightarrow\left|\begin{array}{cccc|c}
1 & 0 & 0 & -1 & b_{4} \\
-1 & 1 & 0 & 0 & b_{2} \\
0 & 0 & 1 & 1 & b_{3} \\
2 & 0 & 3 & 1 & b_{1}
\end{array}\right|
$$

Let $b_{1}=1, b_{2}=1, b_{3}=0, b_{4}=0 \Rightarrow b_{1}-2 b_{4}-3 b_{3} \neq 0$ $\Rightarrow(A \mid \underline{b})$ in consistent $\Rightarrow\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)$ not in vase ot T

