MATH 54 MIDTERM 1 (PRACTICE 2) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Determine the value of k such $\left(\begin{array}{l}2 \\ 3 \\ k\end{array}\right)$ can be written as a linear combination of the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)$. For this value express is as a linear combination.
Solution:
$\left(\begin{array}{lll|l}1 & 0 & 2 & 2 \\ 1 & 1 & 5 & 3 \\ 0 & 1 & 3 & k\end{array}\right) \longrightarrow\left(\begin{array}{lll|l}1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 1 & 3 & 2\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1-k\end{array}\right)$
$\Rightarrow\left(\begin{array}{l}2 \\ 3 \\ k\end{array}\right)$ can be expressed a linear combination $\Longleftrightarrow k=1$
$\Rightarrow\left(\begin{array}{lll|l}1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \Rightarrow \begin{array}{r}x_{1}+2 x_{3}=2 \\ x_{2}+3 x_{3}=1 \\ x_{3} \text { free }\end{array}$
$\Rightarrow\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ is a solution. Hence
$2\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+1 .\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+0\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$
(b) Give an example of a vector $\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, such that $\left(\begin{array}{lll|l}1 & 0 & 2 & b_{1} \\ 1 & 1 & 5 & b_{2} \\ 0 & 1 & 3 & b_{3}\end{array}\right)$ is inconsistent.

Solution:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

2. (25 points) Show that

$$
\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
3 \\
7 \\
14
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
7
\end{array}\right)\right)=\mathbb{R}^{3}
$$

Are these vectors linearly independent? Justify your answers.
Solution:

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 3 & 1 \\
1 & 1 & 7 & 3 \\
2 & 2 & 14 & 7
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
1 & 0 & 3 & 1 \\
0 & 1 & 4 & 2 \\
0 & 2 & 8 & 5
\end{array}\right) \\
& \left.\left.\begin{array}{c}
\downarrow \\
\pi \\
0 \\
0 \\
0
\end{array}\right] \begin{array}{lll}
\pi & 4 & 2 \\
0 & 0 & 1
\end{array}\right) \\
& \Rightarrow \underset{\substack{\text { Pivot in every ran } \\
\text { position }}}{\substack{11 \\
\mathbb{R}^{3}}}
\end{aligned}
$$

There is not a pivot $\Rightarrow\left\{\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 7 \\ 14\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right)\right\}$ position in every column Linearly dependent
3. Let

$$
A=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
2 & 3
\end{array}\right), B=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

Calculate $\operatorname{det}(A B)$ and $\operatorname{det}(B A)$.
Solution:

$$
\begin{aligned}
& A B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
2 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & -1 \\
5 & 1 & 2
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & -1 \\
5 & 1 & 2
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & -1 \\
0 & -9 & -3
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -3 & -1 \\
0 & 0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{det}(A B)=0 \\
& B A=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
1 & 5 \\
2 & -1
\end{array}\right) \\
& \Rightarrow \operatorname{det}(B A)=1 \cdot(-1)-5 \cdot 2=-11
\end{aligned}
$$

4. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ has the property that

$$
T\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right), T\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)=\left(\begin{array}{c}
-3 \\
0 \\
6
\end{array}\right), T\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right)
$$

Calculate the standard matrix associated to T. Is T one-to-one? Justify your answer.
Solution:

$$
\begin{aligned}
& T\left(\begin{array}{c}
0 \\
0-3 \\
0
\end{array}\right)=\binom{-3}{6} \Rightarrow-3 T\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-3 \\
0 \\
6
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
6
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=T\left(\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)=T\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right)-\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
5 \\
0
\end{array}\right) \\
& \Rightarrow \text { Standard Math ix }=\left(\begin{array}{ccc}
0 & 1 & -1 \\
2 & 0 & 5 \\
6 & -2 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
0 & 1 & -1 \\
2 & 1 & \frac{1}{0} \\
6 & -2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
2 & 0 & 5 \\
0 & 1 & -1 \\
6 & -2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
2 & 0 & 5 \\
0 & 1 & -1 \\
0 & -2 & -15
\end{array}\right)
\end{aligned}
$$

5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+x_{3}-x_{4} \\
x_{2}+2 x_{4} \\
x_{1}+2 x_{4} \\
x_{1}+x_{3}-2 x_{4}
\end{array}\right) .
$$

Find a linear transformation $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $T \circ S=S \circ T=I d_{\mathbb{R}^{4}}$.
Solution:

$$
\begin{aligned}
& T=T_{A} \text { where } A=\left(\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 0 & 2 \\
1 & 0 & 0 & 2 \\
1 & 0 & 1 & -2
\end{array}\right) \\
& \left(\begin{array}{cccc|ccc}
1 & 0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc|ccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & -1 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -2 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 4 & 0 & -1 & -3 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \leftarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \\
& \text { V } \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & -2 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & -2 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 4 & 0 & -1 & -3 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \\
& \Rightarrow S\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
-2 x_{1}+x_{3}+2 x_{4} \\
-2 x_{1}+x_{2}+2 x_{4} \\
4 x_{1}-x_{3}-3 x_{4} \\
x_{1}-x_{4}
\end{array}\right)
\end{aligned}
$$

has desired properties.

