MATH 54 MIDTERM 1 (PRACTICE 1) PROFESSOR PAULIN

Name and section:

GSI's name: _____

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Calculate the general solution to the linear system with the following augmented matrix:

/1	4	0	3
3	12	3	15
$\backslash 2$	8	1	8/

Solution:

(b) Write down a general solution to the associated homogeneous linear system. **Solution:**

$$\begin{pmatrix} 3-4x_{2} \\ x_{2} \\ z \end{pmatrix} = \begin{pmatrix} 3-4x_{2} \\ 0+x_{2} \\ z+0\cdot x_{2} \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ z \end{pmatrix} + x_{2} \begin{pmatrix} -4 \\ i \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 0 \\ z \end{pmatrix} + x_{2} \begin{pmatrix} -4 \\ i \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 0 \\ z \end{pmatrix} + x_{2} \begin{pmatrix} -4 \\ i \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 0 \\ z \end{pmatrix} + x_{2} \begin{pmatrix} -4 \\ i \\ 0 \end{pmatrix}$$

PLEASE TURN OVER

2. (25 points) Determine all values of h such that the vector

ors
$$\begin{pmatrix} 1\\2\\0\\2 \end{pmatrix}$$
, $\begin{pmatrix} 0\\h+1\\0\\h+1 \end{pmatrix}$, $\begin{pmatrix} 3\\10\\1\\10 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\h\\h+3 \end{pmatrix}$

、

are linearly dependent.

Solution:

$$\begin{pmatrix} 1 & 0 & 3 & 1 \\ 2 & h+1 & 10 & 3 \\ 0 & 0 & 1 & h \\ 2 & h+1 & 10 & h+3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & h+1 & 4 & 1 \\ 0 & 0 & 1 & h \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h \\ 0 & 0 & 0 & h \\ 0 & 0 & 0 & h \\ 0 & 0 & 0 &$$

Hence vectors are linearly dependent if h = - 1 or h = 0

3. Give an example of two linear transformations S and T from \mathbb{R}^2 to \mathbb{R}^2 such that $S \circ T \neq T \circ S$. Hint: Consider 2×2 matrices. Solution:

Recall that given
$$A$$
, B , 2×2 matrices
 $T_{A} \circ T_{B} = T_{AB}$ and $T_{B} \circ T_{A} = T_{BA}$ and $T_{AB} = T_{BA}$
 f T
Byth lineau
 T_{Luss} are seek A , B such that $AB \neq BA$.
Almost any random chose will do.
Let $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, B\begin{pmatrix} \circ & 1 \\ 1 & 6 \end{pmatrix}$
 $AB = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} \circ & 1 \\ 1 & 6 \end{pmatrix}$
 $BA = \begin{pmatrix} \circ & 1 \\ 1 & \circ \end{pmatrix} \begin{pmatrix} \circ & 1 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$
Let $T = T_{A}$, $S = T_{B}$ \Rightarrow $T_{0}S \neq S_{0}T$

4. If it exists, calculate the inverse matrix of
$$\begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 4 & 5 \\ 1 & 1 & 3 & 7 \\ 1 & 0 & 1 & -2 \end{pmatrix}$$
.

Solution:

PLEASE TURN OVER

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Is the set

$$T\begin{pmatrix}1\\2\\-1\end{pmatrix}, T\begin{pmatrix}3\\5\\0\end{pmatrix}, T\begin{pmatrix}1\\1\\2\end{pmatrix}$$

linearly independent? Justify your answer. Hint: $T(\underline{0}) = \underline{0}$. Solution:

$$\begin{pmatrix} 1 & 3 & i \\ 2 & 5 & i \\ -1 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & i \\ 0 & -1 & -1 \\ 0 & 3 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & i \\ 0 & 1 & i \\ 0 & 0 & 0 \end{pmatrix}$$

$$= There is not a pivot position in every column
= $\binom{1}{2}, \binom{3}{2}, \binom{1}{2}$ are kinowly dependent.
=) There ever π, π_2, π_3 not all zero such that
 $\pi, \binom{1}{2}, + \pi_2 \binom{3}{5} + \pi_3 \binom{1}{2} = 0$
 $= T(\pi, \binom{1}{2}, + \pi_2 \binom{3}{5}) + \pi_3 \binom{1}{2} = 1$
 $\Rightarrow T(\pi, \binom{1}{2}, + \pi_2 \binom{3}{5}) + \pi_3 \binom{1}{2} = 0$
 $\Rightarrow \pi, T(\binom{1}{2}, + \pi_2 \binom{3}{5}) + \pi_3 T(\binom{1}{2}) = T(0) = 0$
 $\Rightarrow \pi, T(\binom{1}{2}, + \pi_2 T(\binom{3}{5}) + \pi_3 T(\binom{1}{2}) = 0$
 $\Rightarrow T(\frac{1}{2}, + \pi_3 T(\binom{3}{5}), T(\binom{1}{2}) = 0$$$