MATH 54 MIDTERM 1 (PRACTICE 1) PROFESSOR PAULIN

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Calculate the general solution to the linear system with the following augmented matrix:

$$
\left(\begin{array}{ccc|c}
1 & 4 & 0 & 3 \\
3 & 12 & 3 & 15 \\
2 & 8 & 1 & 8
\end{array}\right)
$$

Solution:
$\left(\begin{array}{ccc|c}1 & 4 & 0 & 3 \\ 3 & 12 & 3 & 15 \\ 2 & 8 & 1 & 8\end{array}\right) \longrightarrow\left(\begin{array}{lll|l}1 & 4 & 0 & 3 \\ 1 & 4 & 1 & 5 \\ 2 & 8 & 1 & 8\end{array}\right) \longrightarrow\left(\begin{array}{lll|l}1 & 4 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2\end{array}\right)$
$x_{1}+4 x_{2}=3$
\downarrow
$x_{3}=2$
$\Leftarrow\left(\begin{array}{lll|l}1 & 4 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \hat{p} & 7 & \hat{p} & \\ p & p\end{array}\right)$
Hence general solution is $\left(\begin{array}{l}3-4 x_{2} \\ x_{2} \\ 2\end{array}\right)$ where x_{2} is tree.
(b) Write down a general solution to the associated homogeneous linear system.

Solution:
$\left(\begin{array}{c}3-4 x_{2} \\ x_{2} \\ 2\end{array}\right)=\left(\begin{array}{c}3-4 x_{2} \\ 0+x_{2} \\ 2+0 \cdot x_{2}\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)+x_{2}\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$
$\Rightarrow \quad x_{2}\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ is a general solution to homogeneous problem.
2. (25 points) Determine all values of h such that the vectors $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}0 \\ h+1 \\ 0 \\ h+1\end{array}\right),\left(\begin{array}{c}3 \\ 10 \\ 1 \\ 10\end{array}\right),\left(\begin{array}{c}1 \\ 3 \\ h \\ h+3\end{array}\right)$ are linearly dependent.
Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 3 & 1 \\
2 & h+1 & 10 & 3 \\
0 & 0 & 1 & h \\
2 & h+1 & 10 & h+3
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 3 & 1 \\
0 & h+1 & 4 & 1 \\
0 & 0 & 1 & h \\
0 & h+1 & 4 & h+1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 3 & 1 \\
0 & h+1 & 4 & 1 \\
0 & 0 & 1 & h \\
0 & 0 & 0 & h
\end{array}\right) \\
& \uparrow \\
& \text { Echelon } \\
& \text { Vectas independent } \Leftrightarrow \text { Every cohen } \\
& \text { contains a pivot } \\
& \text { position } \\
& \text { 令 } \\
& h+1 \neq 0 \text { and } h \neq 0 \\
& \text { (1) } \\
& h \neq-1 \text { and } h \neq 0
\end{aligned}
$$

Hence vectors ave linearly dependent if $h=-1$ or $h=0$
3. Give an example of two linear transformations S and T from \mathbb{R}^{2} to \mathbb{R}^{2} such that $S \circ T \neq$ $T \circ S$. Hint: Consider 2×2 matrices.
Solution:
Recall that given $A, B, 2 \times 2$ matrices

$$
T_{A} \circ T_{B}=T_{A B} \text { and } T_{B} \circ T_{A}=T_{B A} \quad \text { and } T_{A B}=T_{B A}
$$亦

$\uparrow \uparrow$

$$
A B=B A
$$

Both linear
Thus we seek A, B such that $A B \neq B A$.
Almost any random choice will do.
Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right), B\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
\begin{aligned}
& A B=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right) \\
& A A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

Let $T=T_{A}, S=T_{B} \Rightarrow T_{0 S} \neq S 0 T$
4. If it exists, calculate the inverse matrix of $\left(\begin{array}{cccc}1 & 0 & 1 & -1 \\ 1 & 1 & 4 & 5 \\ 1 & 1 & 3 & 7 \\ 1 & 0 & 1 & -2\end{array}\right)$.

Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
1 & 1 & 4 & 5 & 0 & 1 & 0 & 0 \\
1 & 1 & 3 & 7 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & -2 & 0 & 0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 3 & 6 & -1 & 1 & 0 & 0 \\
0 & 1 & 2 & 8 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 3 & 6 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \longleftarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 3 & 6 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 3 & 0 & -7 & 1 & 0 & 6 \\
0 & 0 & 1 & 0 & 2 & 1 & -1 & -2 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 1 \\
0 & 1 & 0 & 0 & -13 & -2 & 3 & 12 \\
0 & 0 & 1 & 0 & 2 & 1 & -1 & -2 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & -1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{llll}
1 & 0 & 1 & -1 \\
1 & 1 & 4 & 5 \\
1 & 1 & 3 & 7 \\
1 & 0 & 1 & -2
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
0 & -1 & 1 & 1 \\
-13 & -2 & 3 & 12 \\
2 & 1 & -1 & -2 \\
1 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Is the set

$$
T\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), T\left(\begin{array}{l}
3 \\
5 \\
0
\end{array}\right), T\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

linearly independent? Justify your answer. Hint: $T(\underline{\mathbf{0}})=\underline{\mathbf{0}}$.
Solution:

$$
\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & 5 & 1 \\
-1 & 0 & 2
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -1 & -1 \\
0 & 3 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
\boxed{1} & 3 & 1 \\
0 & \sqrt{2} & 1 \\
0 & 0 & 0
\end{array}\right)
$$

\Rightarrow There is not a pivot position in every column $\Rightarrow\left(\begin{array}{l}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{l}3 \\ 5 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ are linoanly dependent.
\qquad

$$
\begin{aligned}
& \lambda_{1}\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=0 \\
& \Rightarrow T\left(\lambda,\binom{1}{2_{1}}+\lambda_{2}\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\lambda_{3}\binom{1}{2}\right)=T(\underline{0})=0 \\
& \Rightarrow \lambda_{1} T\binom{1}{2_{1}}+\lambda_{2} T\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\lambda_{3} T\binom{1}{2}=\underline{0} \\
& \Rightarrow T\left(\begin{array}{l}
1 \\
2_{1} \\
2
\end{array}\right), T\binom{1}{2} \text { are linearly dpendat. }
\end{aligned}
$$

