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Math 54 Final Exam (Practice 3)

This exam consists of 10 questions. Answer the questions in the
spaces provided.

1. (25 points) Find all possible values of a, b, c such that

⎛

⎝
1
−1
2

⎞

⎠ is a solution to linear

system

⎛

⎝
a+ 1 b 0 c
0 c a 2

a+ b −1 −c 0

⎞

⎠

Solution:

PLEASE TURN OVER
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2. (25 points) Let T : R3 → R4 be a one-to-one linear transformation such that

T (x) =

⎛

⎜⎜⎝

1
2
3
−1

⎞

⎟⎟⎠ , T (y) =

⎛

⎜⎜⎝

0
−1
4
−1

⎞

⎟⎟⎠ , T (z) =

⎛

⎜⎜⎝

2
2
14
−4

⎞

⎟⎟⎠ .

Is it possible for the vectors {x,y, z} to be linearly independent? Is it possible for T to
be onto? Justify your answers.

Solution:

PLEASE TURN OVER
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3. (25 points) (a) Let V be a vector space. Carefully define what it means for a subset
U ⊂ V to be a subspace.

Solution:

(b) Let V be the vector space of continuous real-valued functions on the closed interval
[0, 1]. Let U be the subset of V consisting of those functions f such that f(0) ≤ f(1).
Is U a subspace? Carefully justify your answer.

Solution:

PLEASE TURN OVER
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4. (25 points) Let M2 be the vector space of 2× 2 matrices with real entries. Let T be the
following linear transformation:

T : M2 → M2

A #→ A− AT

Find a basis for Ker(T ). What is Rank(T )?

Solution:

PLEASE TURN OVER
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5. (25 points) Let T be the following linear transformation:

T : P2(R) → P3(R)
p(x) "→ p′(x) + p(x)

Find bases B and C, for P2(R) and P3(R) respectively, such that

AB,C =

⎛

⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟⎟⎠ .

Solution:

PLEASE TURN OVER
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6. (25 points) Let W be the span of the vectors

⎛

⎜⎜⎝

1
0
0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
−2
0
1

⎞

⎟⎟⎠ in R4. Find two orthogonal

vectors, u,v, such u+ v =

⎛

⎜⎜⎝

1
0
1
−1

⎞

⎟⎟⎠ and u is in W?

Solution:

PLEASE TURN OVER
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7. (25 points) Give a singular-value decomposition of the matrix

A =

!
−1 0 0
0 0 −2

"
.

Solution:

PLEASE TURN OVER
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Solution (continued) :

PLEASE TURN OVER
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8. (25 points) Find a solution to the following initial value problem

y′′ + 2y′ + 2y = et cos(t), y(0) = 0, y′(0) = 1

Solution:

PLEASE TURN OVER
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Solution (continued) :

PLEASE TURN OVER
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9. (25 points) Find a solution to the initial value problem

x′(t) =

!
1 −2
2 1

"
x(t), x(0) =

!
1
0

"

Solution:

PLEASE TURN OVER
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10. (25 points) Calculate the Fourier series of the function f(x) =

!
1 π/2 ≤ x ≤ π

0 −π ≤ x < π/2
, on

the interval [π, π]. What doe the Fourier series converge to at x = 7π/2?

Solution:

END OF EXAM


