MATH 54 FINAL EXAM (PRACTICE 3) PROFESSOR PAULIN

DO NOT TURN OVER UNTILINSTRUCTED TO DO SO.	
LCULATORS	
YOU MAY USE YOUR OWN BLANK PAPER FOR ROUGH WORK	
REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT	
SCANNED. MAKE SURE YOU WRI	
SOLUTIONS IN THE SPACES PROVIDED	
BLANK PAGE AT THE BACK BUT BE	

\qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. (25 points) Find all possible values of a, b, c such that $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ is a solution to linear system

$$
\left(\begin{array}{ccc|c}
a+1 & b & 0 & c \\
0 & c & a & 2 \\
a+b & -1 & -c & 0
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& 1 \cdot(a+1)-b+2 \cdot 0=c \\
& 1.0-c+2 a=2 \Rightarrow 2 a=c=2 \\
& 1 \cdot(a+b)+1-2 c=0 \quad a+b-2 c=-1 \\
& \left(\begin{array}{ccc|c}
1 & -1 & -1 & -1 \\
2 & 0 & -1 & 2 \\
1 & 1 & -2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -1 & -1 & -1 \\
0 & 2 & 1 & 4 \\
0 & 2 & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 2 & 1 & 4 \\
0 & 0 & -2 & -4
\end{array}\right) \\
& \Rightarrow \quad a=2, b=1, c=2
\end{aligned}
$$

2. (25 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a one-to-one linear transformation such that

$$
T(\underline{\mathbf{x}})=\left(\begin{array}{c}
1 \\
2 \\
3 \\
-1
\end{array}\right), T(\underline{\mathbf{y}})=\left(\begin{array}{c}
0 \\
-1 \\
4 \\
-1
\end{array}\right), T(\underline{\mathbf{z}})=\left(\begin{array}{c}
2 \\
2 \\
14 \\
-4
\end{array}\right) .
$$

Is it possible for the vectors $\{\underline{\mathbf{x}}, \underline{\mathbf{y}}, \underline{\mathbf{z}}\}$ to be linearly independent? Is it possible for T to be onto? Justify your answers.
Solution:

Observe that

$$
\begin{aligned}
& \Rightarrow \quad 2\left(\begin{array}{l}
1 \\
2 \\
3 \\
-1
\end{array}\right)+2\left(\begin{array}{c}
0 \\
-1 \\
4 \\
-1
\end{array}\right)+(-1)\left(\begin{array}{c}
2 \\
2 \\
14 \\
-4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow T(2 x+2 y+(-1) z)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow 2 \underline{x}+2 \underline{y}+(-1) z=0 \quad(T \text { oue-to-one and } T(\underline{0})=0 \text {) } \\
& \Rightarrow \quad\{\underline{x}, y, z\} \text { LtD. } \\
& T=T_{A} \text { for som } A \text { a } 4 \times 3 \text { makix. }
\end{aligned}
$$

\Rightarrow Number ot piust posctions $\leq 3 \Rightarrow$ Number at prat positions $<4=$ number at rows $\Rightarrow T_{A}$ not onto.
3. (25 points) (a) Let V be a vector space. Carefully define what it means for a subset $U \subset V$ to be a subspace.
Solution:
$U \subset V$ is a subspace it

1) O_{V} is contained in U

2 If $\underline{U}, \underline{v}$ are in U, $t \operatorname{ten} \underline{u}+\underline{v}$ is in U
3 If \underline{u} is en U and λ is in \mathbb{R}, then $\lambda \underline{u}$ is in U
(b) Let V be the vector space of continuous real-valued functions on the closed interval $[0,1]$. Let U be the subset of V consisting of those functions f such that $f(0) \leq f(1)$. Is U a subspace? Carefully justify your answer.
Solution:
It is nat a subspace.
Conditions 1/ and 2/ ave salistied. However 3/ is not.
E.g. $f(x)=x$ is is u beans $f(0)=0 \leq 1=f(1)$

However $(-1) f(x)=-x$ and $(-1) f(0)=0 \geqslant-1=(-1) f(1)$
4. (25 points) Let M_{2} be the vector space of 2×2 matrices with real entries. Let T be the following linear transformation:

$$
\begin{aligned}
T: M_{2} & \rightarrow M_{2} \\
A & \mapsto A-A^{T}
\end{aligned}
$$

Find a basis for $\operatorname{Ker}(T)$. What is $\operatorname{Rank}(T)$?
Solution:

$$
\begin{aligned}
& \operatorname{Ker}(T)=\left\{A \text { in } M_{2} \text { such that } T(A)=\left(\begin{array}{lll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \\
&=\left\{A \text { in } M_{2} \text { such that } A-A^{\top}=\left(\begin{array}{lll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \\
&=\left\{A \text { in } M_{2} \text { such that } A=A^{\top}\right\} \in \text { symmetore } 2 \times 2 \\
& \text { motors. }
\end{aligned}
$$ matrices.

$$
\begin{aligned}
& \Rightarrow \operatorname{Kar}(T)=\left\{\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \text {, where } a, b, c \mathrm{real}\right\} \\
& =\left\{a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {, where } a, b, c \operatorname{rad}\right\} \\
& =\underbrace{\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)}_{\text {Basis } \operatorname{San} \operatorname{Ken}(T)})
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dim}\left(\mathbb{M}_{2}\right)=4 \\
& \operatorname{Rank}-N \text { Null } \Rightarrow \overbrace{\operatorname{dimi}(\operatorname{Rage}(T))}+\overbrace{\operatorname{dem}(\operatorname{Kev}(T))}^{\text {Nullity }}=\operatorname{din}\left(M_{2}\right) \\
& \Rightarrow \operatorname{Rank}(T)=1
\end{aligned}
$$

5. (25 points) Let T be the following linear transformation:

$$
\begin{aligned}
T: \mathbb{P}_{2}(\mathbb{R}) & \rightarrow \mathbb{P}_{3}(\mathbb{R}) \\
p(x) & \mapsto p^{\prime}(x)+p(x)
\end{aligned}
$$

Find bases B and C, for $\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{P}_{3}(\mathbb{R})$ respectively, such that

$$
A_{B, C}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Solution:
Let $\beta=\left\{1, x, x^{2}\right\}$, the standound bans 7 . $\mathbb{P}_{2}(\mathbb{R})$

$$
\begin{aligned}
& T(1)=1 \\
& T(x)=1+x \\
& T\left(x^{2}\right)=2 x+x^{2}
\end{aligned}
$$

Note that $c_{1} 1+c_{2}(1+x)+c_{3}\left(2 x+x^{2}\right)=0 \Rightarrow c_{1}=0, c_{2}=0, c_{3}=0$

$$
\Rightarrow \quad\left\{1,1+x, 2 x+x^{2}\right\} \quad \text { L.I. }
$$

Extend to a basis by includes x^{3}

$$
\begin{aligned}
& C=\left\{1,1+x, 2 x+x^{2}, x^{3}\right\} \\
& (T(1))_{c}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
6
\end{array}\right),(T(x))_{c}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(T\left(x^{2}\right)\right)_{c}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& \Rightarrow A_{B, c}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

6. (25 points) Let W be the span of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ -2 \\ 0 \\ 1\end{array}\right)$ in \mathbb{R}^{4}. Find two orthogonal vectors, $\underline{\mathbf{u}}, \underline{\mathbf{v}}$, such $\underline{\mathbf{u}}+\underline{\mathbf{v}}=\left(\begin{array}{c}1 \\ 0 \\ 1 \\ -1\end{array}\right)$ and $\underline{\mathbf{u}}$ is in W ?
Solution:

$$
\begin{aligned}
& v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \\
& \underline{v}_{2}=\left(\begin{array}{c}
0 \\
0_{2}^{2} \\
1
\end{array}\right)-\frac{\binom{0_{2}}{\vdots} \cdot\binom{\vdots}{\vdots}}{\left(\begin{array}{l}
1 \\
\vdots \\
\vdots
\end{array}\right) \cdot\binom{1}{\vdots}}\binom{0}{\vdots}=\left(\begin{array}{c}
-1 / 2 \\
c_{2} \\
0 \\
1 / 2
\end{array}\right) \\
& \in \text { Ora.gond mango } \\
& \Rightarrow \quad W=\operatorname{span}\left(\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-4 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-2}{18}\left(\begin{array}{c}
-1 \\
-4 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 / 9 \\
4 / 9 \\
0 \\
-1 / 9
\end{array}\right)=u \\
& \underline{v}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right)-\left(\begin{array}{c}
1 / 9 \\
4 / 9 \\
0 \\
-1 / 9
\end{array}\right)=\left(\begin{array}{c}
8 / 9 \\
-4 / 9 \\
1 \\
-8 / 9
\end{array}\right)
\end{aligned}
$$

7. (25 points) Give a singular-value decomposition of the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Solution:

$$
A^{\top} A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
0 & -2
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

\Rightarrow cigannalues of $A^{\top} A$ are $4,1,0$
\Rightarrow Singular-values are $2,1,0$
Set $\underline{v}_{1}=\underline{e}_{3}, \underline{v}_{2}=\underline{e}_{1}, \underline{v}_{3}=\underline{e}_{2}$

$$
\begin{aligned}
& \underline{u}_{1}=\frac{1}{2} A \underline{v}_{1}=\frac{1}{2}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) \underline{e}_{3}=\binom{0}{-1} \\
& \underline{u}_{2}=\frac{1}{1} A \underline{v}_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) \underline{e}_{1}=\binom{-1}{0} \\
& \Rightarrow\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Solution (continued) :
8. (25 points) Find a solution to the following initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=e^{t} \cos (t), \quad y(0)=0, y^{\prime}(0)=1
$$

Solution:

$$
\begin{aligned}
& r^{2}+2 r+2=0 \Rightarrow r=\frac{-2 \pm \sqrt{4-8}}{2}=-1 \pm i \\
& \Rightarrow \text { Genend Solution to }=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t) \\
& y^{\prime \prime}+2 y^{\prime}+2 y \\
& y_{p}(t)=A_{0} e^{t} \cos (t)+B_{0} e^{t} \sin (t) \\
& \Rightarrow y_{p}^{\prime}(t)=A_{0} e^{t} \cos (t)-A_{0} e^{t} \sin (t)+B_{0} e^{t} \sin (t)+B_{0} e^{t} \cos (t) \\
& \Rightarrow y_{p}^{\prime \prime}(t)=A_{0} e^{t} \cos (t)-A_{0} e^{t} \sin (t)-A_{0} e^{t} \sin (t)-A_{0} e^{t} \cos (t) \\
& +B_{0} e^{t} \sin (t)+B_{0} e^{t} \cos (t)+B_{0} e^{t} \cos (t)-B_{0} e^{t} \sin (t) \\
& =2 B_{0} e^{t} \cos (t)-2 A_{0} e^{t} \sin (t) \\
& \Rightarrow \quad y_{p}^{\prime \prime}(t)+2 y_{p}^{\prime}(t)+2 y_{p}(t) \\
& =2 B_{B} e^{t} \cos (t)-2 A_{0} e^{t} \sin (t) \\
& +2\left(A_{0} e^{t} \cos (t)-A_{0} e^{t} \sin (t)+B_{0} e^{t} \sin (t)+B_{0} e^{t} \cos (t)\right) \\
& +2\left(A_{0} e^{t} \cos (t)+B_{0} e^{t} \sin (t)\right) \\
& =\left(4 A_{0}+4 B_{0}\right) e^{t} \cos (t)+\left(-4 A_{0}+4 B_{0}\right) e^{t} \sin (t)
\end{aligned}
$$

Solution (continued) :

$$
\begin{aligned}
4 A_{0}+4 B_{0} & =1 \\
-4 A_{0}+4 B_{0} & =0
\end{aligned} \quad \Rightarrow \quad A_{0}=B_{0}=\frac{1}{8}
$$

$$
\begin{aligned}
\Rightarrow \text { General Solution } t_{0} \quad= & \frac{1}{8} e^{t} \operatorname{cas}(t)+\frac{1}{8} e^{t} \sin (t) \\
& +c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)
\end{aligned}
$$

$y(0)=\frac{1}{8}+c_{1}=0$

$$
\begin{aligned}
y^{\prime}(t) & =\frac{1}{8} e^{t} \cos (t)-\frac{1}{8} e^{t} \sin (t)+\frac{1}{8} e^{t} \sin (t)+\frac{1}{5} e^{t} \cos (t) \\
& -c_{1} e^{-t} \cos (t)-c_{1} e^{-t} \sin (t)-c_{2} e^{-t} \sin (t)+c_{2} e^{-t} \cos (t)
\end{aligned}
$$

$$
\Rightarrow y(0)=\frac{1}{4}-c_{1}+c_{2}=1
$$

$$
\Rightarrow \quad c_{1}=\frac{-1}{8}, c_{2}=\frac{5}{8}
$$

$$
\begin{aligned}
\Rightarrow y(t)= & \frac{1}{8} e^{t} \cos (t)+\frac{1}{8} e^{t} \sin (t) \\
& +\left(\frac{-1}{8}\right) e^{-t} \cos (t)+\left(\frac{5}{8}\right) e^{-t} \sin (t)
\end{aligned}
$$

9. (25 points) Find a solution to the initial value problem

$$
\underline{x}^{\prime}(t)=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right) \underline{x}(t), \quad \underline{x}(0)=\binom{1}{0}
$$

Solution:

$$
\begin{aligned}
& \operatorname{det}\left(A-x I_{2}\right)=(1-x)^{2}+4=0 \Rightarrow 1-x= \pm 2 i \Rightarrow x=1 \pm 2 i \\
& \begin{array}{c}
\operatorname{Nul}\left(A-(1+2 i) I_{2}\right)=N_{m l}\left(\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right), ~ \\
\frac{1}{-2 i}=\frac{1}{2} i
\end{array} \\
& \left(\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right) \Rightarrow \operatorname{Nul}\left(\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right)=\left\{\binom{i x_{2}}{x_{2}}\right) \\
& =\operatorname{Span}\binom{i}{1} \\
& \binom{i}{1}=\binom{0}{1}+i\binom{1}{0} \\
& \Rightarrow \text { General Solution }=c_{1}\left(e^{t} \cos (2 t)\binom{0}{1}-e^{t} \sin (2 t)(110)\right) \\
& +c_{2}\left(e^{t} \sin (2 t)\binom{0}{1}+e^{t} \cos (2 t)\binom{1}{0}\right) \\
& \underline{x}(0)=c_{1}\left(\binom{0}{1}\right)+c_{2}\left(\binom{1}{0}\right)=\binom{c_{2}}{c_{1}}=\binom{1}{0} \Rightarrow \begin{array}{l}
c_{1}=0 \\
c_{2}=1
\end{array} \\
& \Rightarrow \underline{x}(t)=e^{t} \sin (2 t)\binom{0}{1}+e^{t} \cos (2 t)\binom{1}{0}
\end{aligned}
$$

10. (25 points) Calculate the Fourier series of the function $f(x)=\left\{\begin{array}{ll}1 & \pi / 2 \leq x \leq \pi \\ 0 & -\pi \leq x<\pi / 2\end{array}\right.$, on the interval $[\pi, \pi]$. What doe the Fourier series converge to at $x=7 \pi / 2$?
Solution:

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{\pi / 2}^{\pi} \cos (n x) d x=\left.\frac{1}{n \pi} \sin (n x)\right|_{\pi / 2} ^{\pi} \\
& =\frac{-1}{n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

$$
u=0
$$

$$
\begin{aligned}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{\pi / 2}^{\pi} \sin (n x) d x & =\left.\frac{-1}{n+\pi} \cos (n x)\right|_{\frac{\pi}{2}} ^{\pi} \\
& =\frac{-1}{n \pi}\left((-1)^{n}-\cos \left(\frac{n \pi}{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \text { F.s. } & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \\
& \left.=\frac{1}{4}+\sum_{n=1}^{\infty}\left(\frac{-1}{n \pi} \sin \left(\frac{n \pi}{2}\right) \cos (n x)+\frac{-1}{n \pi} l(-1)^{n}-\cos \left(\frac{n \pi}{2}\right)\right) \sin (n x)\right)
\end{aligned}
$$

\Rightarrow F.S. Converge to 0 at $x=\frac{7 \pi}{2}$

