MATH 54 FINAL EXAM (PRACTICE 2) PROFESSOR PAULIN

\qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Are the following matrices row equivalent?

$$
\left(\begin{array}{cccc}
2 & 0 & 4 & 0 \\
0 & 1 & 3 & 0 \\
1 & -1 & -1 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & -2 & 2 \\
2 & 0 & 4 & 3
\end{array}\right)
$$

Solution:
(b) What are the dimensions of the null and column spaces of the above matrices? Solution:
dimension of column space $=$ a umber at pivot colvenns $=3$ dimension at nl space $=$ number ot free columns $=1$

$$
\begin{aligned}
& \text { Reduced }
\end{aligned}
$$

2. (25 points) Do the following vectors span \mathbb{R}^{3} ?

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right),\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)
$$

If a matrix has three of these vectors as columns, can it be invertible? Carefully justify your answers.
Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
2 & 0 & 2 & 2 \\
0 & -1 & -1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -2 & -2 & -4 \\
0 & -1 & -1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{Span}\left(\left(\begin{array}{c}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
-2
\end{array}\right)\right)=\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right)\right) \\
& \text { and } \operatorname{dim}\left(\operatorname{Span}\left(\binom{1}{0},\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)\right)=2 \\
& \Rightarrow \operatorname{Span}\left(\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right) \neq \mathbb{R}^{3}
\end{aligned}
$$

If A is a 3×3 matrix with colure given by 3 at then
vedas $\operatorname{Rank}(A)<3$. Hence A nat invertible.
3. (25 points) (a) Let $T: V \rightarrow W$ be a linear transformation between two vector spaces. Define the kernel of $T, \operatorname{Ker}(T)$. Show that $\operatorname{Ker}(T)$ is a subspace of V. You may assume that $T\left(\underline{0}_{V}\right)=\underline{0}_{W}$
Solution:
$\operatorname{Kev}(T)=\left\{\underline{v}\right.$ in V such that $\left.T(\underline{v})=\underline{o}_{w}\right\}$
Claim : $\operatorname{Ker}(T) \subset V$ is a subspace
Prot \quad V $T\left(\underline{O}_{v}\right)=\underline{o}_{w} \Rightarrow \underline{o}_{v}$ in $\operatorname{Kev}(T)$

$$
\begin{aligned}
\text { 2/ } \underline{u}, \underline{v} \text { in } \operatorname{Ker}(T) & \Rightarrow T(\underline{u})=\underline{o}_{u}, T(\underline{v})=\underline{o}_{w} \\
& \Rightarrow T(\underline{u})+T(\underline{v})=\underline{o}_{u}+\underline{o}_{u}=\underline{o}_{u} \\
& \Rightarrow T(\underline{u}+\underline{v})=\underline{o}_{w} \Rightarrow \underline{u}+\underline{v} \text { in Kew }(t)
\end{aligned}
$$

$3 \underline{i} \underline{\operatorname{in}} \operatorname{Ker}(t), \lambda$ is $\mathbb{R} \Rightarrow T(\underline{u})=0{ }_{w}$

$$
\Rightarrow \lambda T(\underline{u})=\lambda \underline{o}_{n}=\underline{o}_{n}
$$

$$
\Rightarrow T\left(\hat{\lambda}_{\underline{u}}\right)=\underline{o}_{w} \Rightarrow \lambda_{\underline{u}} \text { in } \operatorname{kw}(T)
$$

(b) Does there exist a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, such that $\operatorname{Ker}(T)=\left\{\binom{x}{x+1}\right\}$ where x is any real number?
Solution:
No! $\quad\binom{x}{x^{x}+1}=\binom{0}{0} \quad \Rightarrow \quad x=0$ and $x=-1$.
$\Rightarrow \quad\binom{0}{0}$ is ant in the set $\left[\binom{x}{x+1}\right.$, x real $\}$. Hence it
is ant a subspace.
4. (25 points) Let T be the following linear transformation:

$$
\begin{aligned}
T: \mathbb{P}_{2}(\mathbb{R}) & \rightarrow \mathbb{P}_{2}(\mathbb{R}) \\
p(x) & \mapsto p^{\prime}(x)+p(x)
\end{aligned}
$$

Does there exist a basis $B \subset \mathbb{P}_{2}(\mathbb{R})$ such that $A_{B, B}$ is diagonal? Justify your answer. Hint: Think about the possible degrees of the polynomials in B.
Solution:

$$
\begin{aligned}
& \beta=\left(p,(x), p_{2}(x), p_{3}(x)\right) \\
& \left.A_{\beta, \beta}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \Leftrightarrow \begin{array}{l}
T(p,(x))=\lambda_{1} p_{1}(x) \\
\\
\\
\\
T\left(p_{2}(x)\right)=\lambda_{2} p_{2}(x) \\
T\left(p_{3}(x)\right)=\lambda_{3} p_{3}(x) \\
T(p(x))=\lambda p(x) \Leftrightarrow p^{\prime}(x)+p(x)=\lambda p(x) \\
\Leftrightarrow(\lambda-1) p(x)=p^{\prime}(x)
\end{array} \quad \text { degree } p^{\prime}(x)\right)<\text { degree }(p(x))
\end{aligned}
$$

So the only way this can happen is if $\lambda-1=0$ and $p(x)$ constant.
But $\left\{p_{1}(x), p_{2}(x), p_{7}(x)\right\}$ ave a basis fur $p_{2}(\mathbb{R})$ $\Rightarrow N_{0}$ such basis exists.
5. (25 points) Let $C[-1,1]$ be the inner product space of real-valued functions on the closed interval $[-1,1]$, such that

$$
<f, g>=\int_{-1}^{1} f(x) g(x) d x
$$

Find an orthogonal basis for $W=\operatorname{Span}\left(1, x^{2}, x^{4}\right)$.
Solution:
Must apply Gram-Schmidt:

$$
\begin{aligned}
& \underline{v}_{3}=x^{4}-\frac{\left\langle x^{4}, 1\right\rangle}{\langle 1,1\rangle} 1-\frac{\left\langle x^{4}, x^{2}-\frac{1}{3}\right\rangle}{\left\langle x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right\rangle}\left(x^{2}-\frac{1}{3}\right) \\
& \int_{-1}^{1} x^{4} d x=2 \int_{0}^{1} x^{4} d x=\frac{2}{5}, \int_{-1}^{1} 1 d x=2 \\
& \int_{-1}^{1} x^{4}\left(x^{2}-\frac{1}{3}\right) d x=2 \int_{0}^{1} x^{6}-\frac{1}{3} x^{4} d x=2\left(\frac{1}{7}-\frac{1}{15}\right) \\
& \int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\int_{-1}^{1} x^{4}-\frac{2}{3} x^{2}+\frac{1}{9} d x=2 \int_{0}^{1} x^{4}-\frac{2}{3} x^{2}+\frac{1}{9} d x \\
& =2\left(\frac{1}{5}-\frac{2}{7}+\frac{1}{4}\right) \\
& \Rightarrow v_{3}=x^{4}-\frac{\frac{2}{5}}{2}-\frac{2\left(\frac{1}{7}-\frac{1}{15}\right)}{2\left(\frac{1}{5}-\frac{1}{4}\right)}\left(x^{2}-\frac{1}{3}\right)=x^{4}-\frac{90}{105} x^{2}+\frac{9}{105}
\end{aligned}
$$

$\Rightarrow \quad\left\{1, x^{2}-\frac{1}{3}, x^{4}-\frac{90}{105} x^{2}+\frac{9}{105}\right\}$ is an nthogond bans
6. (25 points) Determine all least-squares solutions to the following linear system:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) \underline{x}=\left(\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right)=\left(\begin{array}{c}
14 \\
4 \\
10
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
4 & 2 & 2 & 14 \\
2 & 2 & 0 & 4 \\
2 & 0 & 2 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
2 & 2 & 0 & 4 \\
4 & 2 & 2 & 14 \\
2 & 0 & 2 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
2 & 2 & 0 & 4 \\
0 & -2 & 2 & 6 \\
0 & -2 & 2 & 6
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
2 & 2 & 0 & 4 \\
0 & -2 & 2 & 6 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right) \leftarrow\left(\begin{array}{ccc|c}
2 & 0 & 2 & 10 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right) \leftarrow\left(\begin{array}{ccc|c}
2 & 2 & 0 & 4 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Rightarrow \text { Gencual Least-squares solution }=\left\{\left(\begin{array}{c}
5-x_{3} \\
-3+x_{3} \\
x_{3}
\end{array}\right), x_{3} \text { real }\right\}
\end{aligned}
$$

7. (25 points) Find orthonormal bases of \mathbb{R}^{2}, B and C, such that if

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right)
$$

then $A_{B, C}$ is diagonal with non-negative entries.
Solution:

$$
A^{\top} A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right)=\left(\begin{array}{cc}
20 & -10 \\
-10 & 5
\end{array}\right)
$$

$\operatorname{det}\left(A^{+} A-x I_{2}\right)=(20-x)(5-x)-100=x^{2}-25 x$
\Rightarrow eigenvalues of $A^{\top} A$ are $2 S$ and 0
\Rightarrow Singular - values of A are S and O

$$
\begin{aligned}
& N_{u l}\left(A^{\top} A-25 I_{2}\right)=\operatorname{Nut}\left(\begin{array}{cc}
-5 & -10 \\
-10 & -20
\end{array}\right)=\operatorname{Nul}\left(\begin{array}{cc}
1 & 2 \\
0 & 0
\end{array}\right)=\operatorname{Som}\left(\binom{-2}{1}\right) \\
& N_{u l}\left(A^{\top} A-0 I_{2}\right)=\operatorname{Nul}\left(\begin{array}{cc}
20 & -10 \\
-10 & 5
\end{array}\right)=\operatorname{Nut}\left(\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right)=\operatorname{Span}\left(\binom{1}{2}\right) \\
& \left.\left\|\binom{-2}{1}\right\|=\sqrt{5}, \| \begin{array}{l}
1 \\
2
\end{array}\right) \|=\sqrt{5} \\
& \text { Let } \underline{v}_{1}=\binom{-2 / \sqrt{5}}{1 / \sqrt{5}}, \quad \underline{v}_{2}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}} \\
& \underline{u_{1}}=\frac{1}{5}\binom{2-1}{-42}\binom{-2 / \sqrt{5}}{1 / \sqrt{5}}=\frac{1}{5}\binom{-5 / \sqrt{5}}{10 / \sqrt{3}}=\binom{-1 / \sqrt{5}}{2 / \sqrt{5}}
\end{aligned}
$$

Solution (continued) :

$$
\begin{aligned}
& \operatorname{Nat}\left(A^{\top}\right)=\operatorname{Nat}\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)=\operatorname{Nal}\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right)=\operatorname{Span}\left(\binom{2}{1}\right) \\
& \left\|\binom{2}{1}\right\|=\sqrt{5}
\end{aligned}
$$

Let $\underline{u}_{2}=\binom{2 / \sqrt{5}}{1 / \sqrt{5}}$
Orthonormal bases

Let $\beta=\left\{\binom{-2 / \sqrt{5}}{1 / \sqrt{5}},\binom{1 / \sqrt{5}}{2 / \sqrt{5}}\right\}, \quad C=\left\{\binom{-1 / \sqrt{5}}{2 / \sqrt{5}},\binom{2 / \sqrt{5}}{1 / \sqrt{5}}\right\}$

$$
\Rightarrow \quad A_{B r C}=\left(\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right)
$$

8. (25 points) Find a general solution to the following differential equation

$$
y^{\prime \prime}-y=t \cos (t)+\sin (t)
$$

Solution:
$r^{2}-1=0 \Rightarrow r= \pm 1 \Rightarrow$ Geneal solution to $y^{n}-y=0$ is $c_{1} e^{t}+c_{2} e^{-t}$

$$
\begin{aligned}
& y_{p}(t)=\left(A_{0}+A, t\right) \cos (t)+\left(B_{0}+B_{1} t\right) \sin (t) \\
& \Rightarrow \quad y p^{\prime}(t)=A_{1} \cos (t)-\left(A_{0}+A, t\right) \sin (t)+B, \sin (t)+\left(B_{0}+B_{1} t\right) \cos (t) \\
& =\left(A_{1}+B_{0}+B_{1} t\right) \cos (t)+\left(B_{1}-A_{0}-A_{1} t\right) \sin (t) \\
& \Rightarrow y_{p}{ }^{\prime \prime}(t)=B_{1} \cos (t)-\left(A_{1}+B_{0}+B_{1} t\right) \sin (t) \\
& -A_{1} \sin (t)+\left(B_{1}-A_{0}-A, t\right) \cos (t) \\
& =\left(2 B_{1}-A_{0}-A_{1} t\right) \cos (t)+\left(-2 A_{1}-B_{0}-B_{1} t\right) \sin (t) \\
& \Rightarrow y_{p}^{\prime \prime}(t)-y_{p}(t)=\left(2 B_{1}-A_{0}-A_{1} t\right) \cos (t)+\left(-2 A_{1}-B_{0}-B_{1} t\right) \sin (t) \\
& -\left(A_{0}+A, t\right) \cos (t)-\left(B_{0}+B_{1} t\right) \sin (t) \\
& =\left(2 B_{1}-2 A_{0}-2 A, t\right) \cos (t)+\left(-2 A,-2 B_{0}-2 B, t\right) \sin (t) \\
& =\quad t \cos (t)+\sin (t) \\
& \Rightarrow \quad 2 B,-2 A_{0}=0 \quad-2 A_{1}-2 B_{0}=1 \\
& -2 A_{1}=1 \quad-2 \beta_{1}=0
\end{aligned}
$$

Solution (continued) :

$$
\Rightarrow \quad B_{1}=0 \Rightarrow A_{0}=0
$$

$$
A_{1}=\frac{-1}{2} \Rightarrow B_{0}=0
$$

\Rightarrow General Solution to

$$
y^{\prime \prime}-y=t \cos (t)+\sin (t)=\frac{-1}{2} t \cos (t)+c_{1} e^{t}+c_{2} e^{-t}
$$

9. (25 points) Find a general solution to

$$
\begin{aligned}
& \text { lution to } \\
& \underline{x}^{\prime}(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right) \underline{x}(t) .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \operatorname{det}\left(A-x I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
1-x & 0 & 0 \\
0 & 1-x & 1 \\
0 & -1 & 1-x
\end{array}\right)=(1-x)\left((1-x)^{2}+1\right)=0 \\
& \Rightarrow \quad x=1 \text { or } 1-x= \pm i \Rightarrow \quad x=1 \text { on } x=1 \pm i \\
& \operatorname{Nul}\left(A-1 \cdot I_{3}\right)=\operatorname{Nal}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)=\operatorname{Nal}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right) \\
& \operatorname{Nal}\left(A-(1+i) I_{3}\right)=N W A\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & 1 \\
0 & -1 & -i
\end{array}\right) \\
& \left(\frac{1}{-i}=i\right) \\
& \left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & 1 \\
0 & -1 & -i
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & i \\
0 & -1 & -i
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & i \\
0 & 0 & 0
\end{array}\right) \\
& \Rightarrow N W A\left(A-(1+i) I_{3}\right)=\left\{\left(\begin{array}{c}
0 \\
-i x_{3} \\
x_{3}
\end{array}\right)\right\}=\operatorname{Span}\left(\left(\begin{array}{c}
0 \\
-i \\
1
\end{array}\right)\right) \\
& \left(\begin{array}{c}
0 \\
-i \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+i\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) \\
& \Rightarrow e^{t} \cos (t)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-e^{t} \sin (t)\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right), e^{t} \sin (t)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+e^{t} \cos (t)\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

are C.I. solutions

Solution (continued) :

$$
\begin{aligned}
\Rightarrow \text { General Solution }= & c_{1} e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& +c_{2}\left(e^{t} \cos (t)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-e^{t} \sin (t)\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)\right) \\
& +c_{3}\left(e^{t} \sin (t)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+e^{t} \cos (t)\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)\right)
\end{aligned}
$$

10. (25 points) Calculate the cosine Fourier series of the function $f(x)=e^{x}$, on the interval $[0, \pi]$.
Solution:

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} e^{x} \cos (n x) d x \\
& \int e^{x} \operatorname{ces}(n x) d x=e^{x} \cdot \frac{1}{n} \sin (n x)-\int e^{x} \frac{1}{n} \sin (n x) d x \\
& \int e^{x} \sin (n x) d x=e^{x}\left(\frac{-1}{n}\right) \cos (n x)+\int e^{x} \frac{1}{n} \cos (n x) d x \\
& \Rightarrow \int e^{x} \cos (n x) d x=e^{x} \cdot \frac{1}{n} \sin (n x)+e^{x}\left(\frac{1}{n^{2}}\right) \cos (n x)-\frac{1}{n^{2}} \int e^{x} \cos (n x) d x \\
& \Rightarrow \quad \int e^{x} \cos (n x) d x=\frac{1}{1+\frac{1}{n^{2}}} e^{x}\left(\frac{1}{n} \sin (n x)+\frac{1}{n^{2}} \cos (n x)\right) \\
& \Rightarrow \quad \int_{0}^{\pi} e^{x} \cos (n x) d x=\left.\frac{1}{1+\frac{1}{n^{2}}} e^{x}\left(\frac{1}{n} \sin (n x)+\frac{1}{n^{2}} \cos (n x)\right)\right|_{0} ^{\pi} \\
& =\left(\frac{1}{1+\frac{1}{n^{2}}}\right) e^{\pi} \cdot \frac{1}{n^{2}}(-1)^{n}-\left(\frac{1}{1+\frac{1}{n^{2}}}\right)\left(\frac{1}{n^{2}}\right) \\
& =\frac{1}{n^{2}+1}\left(e^{\pi}(-1)^{n}-1\right) \\
& \Rightarrow \text { FrS. }=\frac{e^{\pi}-1}{\pi}+\sum_{n=1}^{\infty} \frac{2}{\pi\left(n^{2}+1\right)}\left(e^{\pi}(-1)^{n}-1\right) \cos (n x)
\end{aligned}
$$

