
Homennik 6 Solutions
511.5 Alternating Series
$(3) - \frac{2}{5} + \frac{4}{6} - \frac{6}{7} + \frac{8}{8} \dots = \sum_{n=1}^{\infty} a_n$
$a_n = (-1)^n \frac{2n}{n+4}$
$\frac{2n}{n+4} \rightarrow 2 as n \rightarrow \infty = 7 \lim_{n \rightarrow \infty} a_n \neq 0$
$=$ $\sum_{n=1}^{\infty} a_n div.$
$Q_{4} = (-1) \frac{1}{\ln(n+2)}$
$b_n = \frac{1}{t_n(n+2)}$, $f(n) = \frac{1}{t_n(n+2)}$
$\frac{1}{x(z)} = \frac{-1}{x+z} < 0 \forall m x \ge 1$ $\frac{1}{x(z+z)^2} < 0 \forall m x \ge 1$
=> {bn} decreasing
$ln(x+2) \rightarrow \infty on x \rightarrow a = 7 bn \rightarrow 0$
os n-s os
=> convergent by A.S.T.

$$b_{n} = \frac{n}{2^{n}}, \quad f(x) = \frac{\pi}{2^{x}}$$

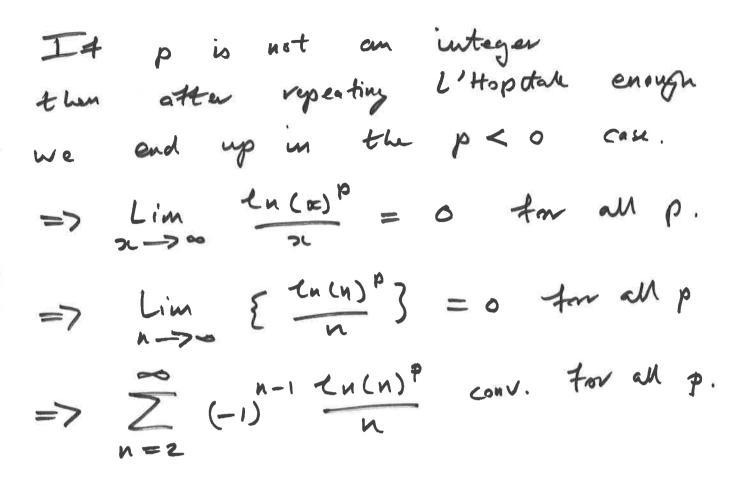
$$f'(x) = 2^{x} - \pi \ln(2) 2^{x}} = \frac{(1 - \pi \ln(2))}{2^{x}}$$

$$for = 7.7 \quad (f_{n}(2) > 0.5)$$

$$= 7 \quad \{b_{n}\} \quad decreasing \quad for \quad n > 2$$

$$\lim_{x \to \infty} \frac{\pi}{2^{x}} = \lim_{x \to \infty} \frac{1}{\ln(2)2^{x}} = 0$$

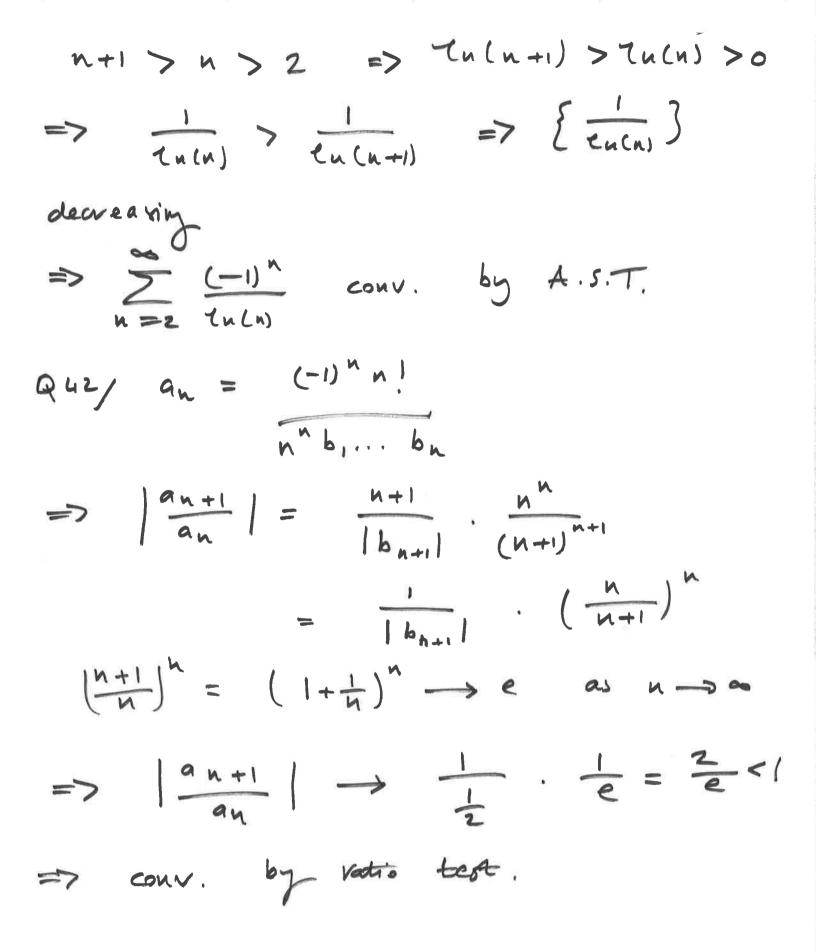
$$= 7 \quad \lim_{n \to \infty} \{b_{n}\} = 0$$


$$= 7 \quad Convergent \quad by \quad A.S.T.$$

$$Ql^{q} = \frac{n^{n}}{n!} = \frac{n \times n \times n \dots \times n}{n \times (n-1) \times (n-2) \dots \times 1} \ge 1$$

$$for \quad n \ge 1$$

$$\Rightarrow \quad \lim_{n \to \infty} (-1)^{n} \frac{n^{n}}{n!} \neq 0 \implies div.$$


 $\frac{Q_{24}}{b_{n}} = \frac{l_{n}(n)^{p}}{n}, \quad f(z) = \frac{l_{n}(z)^{p}}{z}$ f'(x) = (p - ln(x)) + (n(x)) =7'(x) < 0 7m all 2>e^P => (bn) eventually decreasing. $Lim ln(x) = \infty$ $n \to \infty$ $If p \leq 0 \Rightarrow \frac{ln(x)}{x} \to 0$ as 22 - 3 00 Assume p>0 $\lim_{x \to \infty} \frac{\ln \ln p}{2x} = \lim_{x \to \infty} \frac{p \ln \ln p}{1}$ 2->= - lim plula) P-1 x->- x It p is an integer we repeat this p time to get $\lim_{x \to \infty} \frac{\ln(x)P}{n} = \lim_{x \to \infty} \frac{P!}{n} = 0$

511.6 Absolute Convergence
$a_{2/2} \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \overline{v_n}$. Div $(p=\pm < 1)$
=> not abs. conv.
ETTES position, decreasing and Lime Etters =0
$\{\overline{T}_{n}\}$ positive, decreasing al $\lim_{h \to \infty} \{\overline{T}_{n}\} = 0$ => $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ court by A.S.T. => $\frac{\text{condittonally}}{\text{court}}$
$a_s/a_n = \frac{\sin(n)}{2^n}$, $ a_n = \frac{ \sin(n) }{2^n}$
\Rightarrow $ \alpha_{y} < (\frac{1}{2})^{n}$ \Rightarrow $ sin(n) $
$\sum_{n=1}^{\infty} G_n < (\overline{z}) \qquad \qquad$
=> Abs. Lonv.
$Q_{T} a_{n} = \frac{n}{5^{n}} = 2 \left \frac{a_{n+1}}{a_{n}} \right = \frac{n+1}{n} \cdot \frac{1}{5}$
$\frac{n+1}{n} = \frac{1+\frac{1}{n}}{1} \longrightarrow 1 \text{as } n \longrightarrow \infty$
$= \sum_{n \to \infty} \left\{ \left \frac{a_{n+1}}{a_n} \right \right\} = \frac{1}{5} < 1$
=> Abs. conv. by notio test.

$q_{12}/q_{2} = ke^{-k}$
$= \frac{q_{k+1}}{q_k} = \frac{k+1}{k} \cdot \frac{1}{e} \rightarrow \frac{1}{e} < 1$
as k -> ~
= 2 convergent. $ (2n+2)(2n+1) = (2n+2)(2n+1) = (n+1)(n+1) = (n+1)(n+1)(n+1) = (n+1)(n+1)(n+1)(n+1)(n+1) = (n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)$
$= \sum \left \frac{a_{n+1}}{a_n} \right \rightarrow 4 \ge 1$ as $n \rightarrow \infty$
=> divergent.
$Q23/q_n = \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$
$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \frac{2n+2}{n+1} \rightarrow 2 > 1 os n \rightarrow ss$
=> divergent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-

$Q''' Q'' = \frac{(n!)^2}{(kn)!}$
=> $ \frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{(kn+1)\cdots(kn+k)}$
$ k = 1 = 1 \frac{a_{n+1}}{a_n} = N + 1 \rightarrow \infty$
$k = 2 = 7 \left \begin{array}{c} a_{n+1} \\ a_n \end{array} \right \longrightarrow \begin{array}{c} 1 \\ 4 \end{array}$
$k > 2 = 7 \left \frac{a_{n+1}}{a_{n}} \right \rightarrow 0$
=> Convergent it and only it k >2.
Optional Problems
Q_{51} a) $5_n = q_1 + \dots + q_n $
$S_n^{\dagger} = a_1^{\dagger} + \cdots + a_n^{\dagger}$
For all kall at slazl
= > 0 < 5 n < 5 n' for all n.
Esn'3 increasing and by definition

$$\lim_{n \to \infty} \left\{ S_{n}^{1,1} \right\} = S = \sum_{n=1}^{\infty} |a_{n}|$$

$$\Rightarrow S_{n} \leq S \quad \text{for all } n.$$

$$a_{k}^{+} \ge 0 \quad \text{for all } k > 1 \quad =>$$

$$\left\{ S_{n}^{++} \right\} \quad \text{increasing and bounded above}$$

$$=> \quad \text{bounded and monotone}$$

$$\Rightarrow \quad \text{convergent}$$

$$\Rightarrow \quad \sum_{n=1}^{\infty} a_{n}^{+} \quad \text{convergent } b_{2} \quad \text{detinition}.$$

$$|a_{n}| = a_{n}^{+} - a_{n}^{-}$$

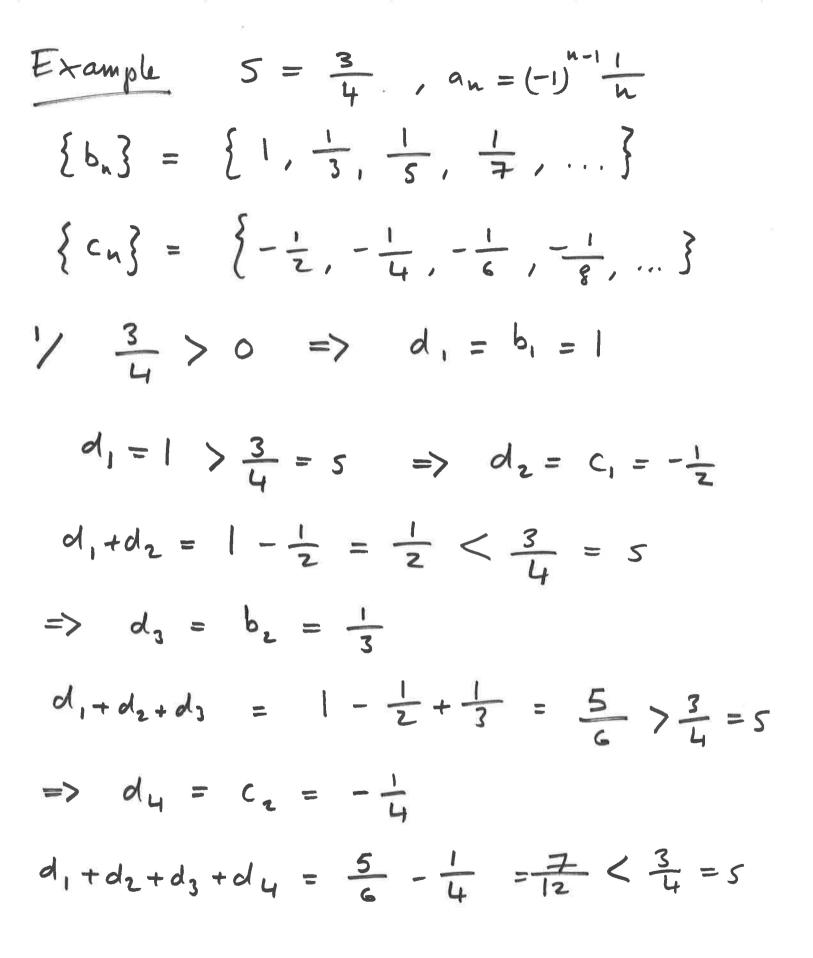
$$\Rightarrow \quad a_{n}^{-} = a_{n}^{+} - |a_{n}|$$

$$\sum_{n=1}^{\infty} |a_{n}|, \quad \sum_{n=1}^{\infty} a_{n}^{+} \quad \text{conv}.$$

$$\Rightarrow \quad \sum_{n=1}^{\infty} (a_{n}^{+} - |a_{n}|) \quad \text{conv}.$$

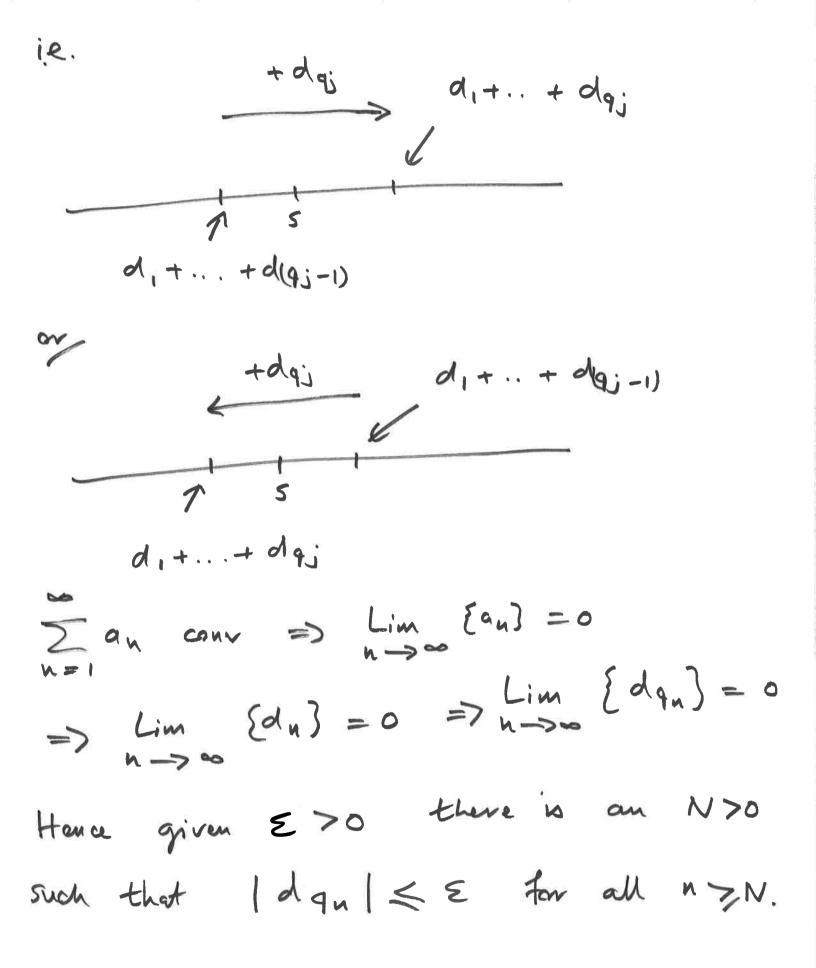
$$\Rightarrow \quad \sum_{n=1}^{\infty} (a_{n}^{+} - |a_{n}|) \quad \text{conv}.$$

$$\Rightarrow \quad \sum_{n=1}^{\infty} a_{n}^{-} \quad \text{conv}.$$


$$\Rightarrow \quad \sum_{n=1}^{\infty} a_{n}^{-} \quad \text{conv}.$$

$$\text{Hence} \quad \sum_{n=1}^{\infty} |a_{n}| \quad \text{conv} \Rightarrow \sum_{n=1}^{\infty} a_{n}^{+}, \quad \sum_{n=1}^{\infty} a_{n}^{-} \quad \text{conv}.$$

PAGE 18

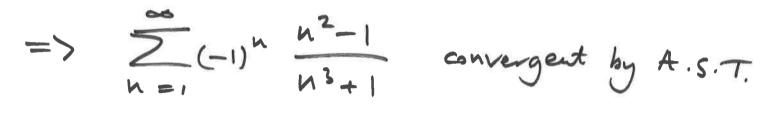

b)
$$\sum_{n=1}^{\infty} a_n \mod conv.$$

 $\xrightarrow{n=1}^{\infty} a_n \mod \sum_{n=1}^{\infty} |a_n| div.$
 $|a_n| = a_n^+ - a_n^- Assume \sum_{n=1}^{\infty} a_n$
 $a_n = a_n^+ + a_n^- is convitionally convergent.$
 $Conl = \sum_{n=1}^{\infty} (a_n^+ - a_n^-) conv$
 $\implies \sum_{n=1}^{\infty} (a_n^+ - a_n^-) conv$
 $\implies \sum_{n=1}^{\infty} |a_n| conv \implies Nat cond. conv.$
 $Conv = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} a_n^+ conv , \sum_{n=1}^{\infty} a_n^- div.$
 $a_n = a_n^+ + a_n^- \implies a_n^- = a_n - a_n^+$
 $\sum_{n=1}^{\infty} a_n \mod v, \sum_{n=1}^{\infty} a_n^- \mod v$
 $\sum_{n=1}^{\infty} (a_n - a_n^+) = \sum_{n=1}^{\infty} a_n^- \mod v.$
 $Contradiction.$

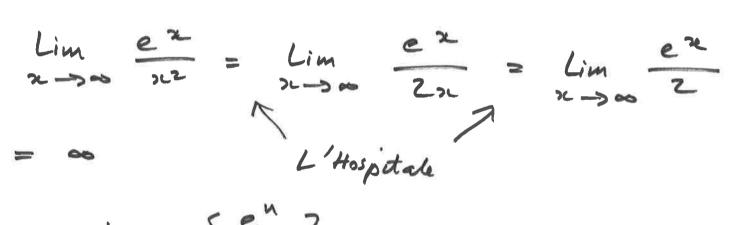
Let s be a real number. rearrange [an] to make the We want to Sum 5. We'll define [du] via the Following algorithm 1st + term let $d_1 = b_1$ 1st -let $d_1 = c_1$ term ソ I+ 5 >> 0 I7 5<0 Z/ Imagine we have defined d, ..., dk-1. These will composed of b; and c; for varying i and j. $T \neq d_1 + \dots + d_{k-1} \geq 5$ let de be the nort unselected Cj. It d, +... + dk-1 < 5 let de be the nort unselected b;.

* * * * * *

Heuristically we add up enough b; to be 7,5, then add enough c; to be < s and repert. This never styps because Zbn and Z cn and divergent by 51 b). Claim Zdn = 5 n=1 Proof Lot Eq., 92, ... 3 be the Sequence at whole numbers such that adding days (to the previous dies) Crosses 5. i.e. I7 dqj ≥ 0 => dqj+1 < 0 It $d_{g_j} < 0 \Rightarrow d_{g_j+1} \ge 0$

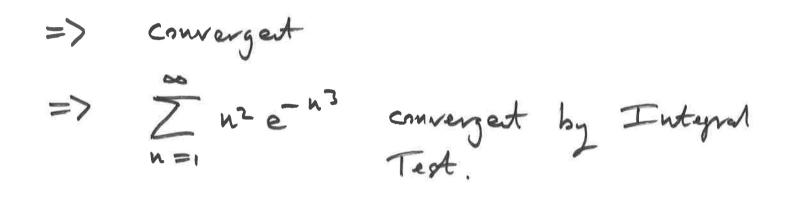

However observe that it $S_k = d_1 + \dots + d_k$ then it $k \ge {}^{q}N$ $|s-s_{k}| \le |d_{q_{n}}|$ for all n > N. (This is the same logic as the error bound in the alternating series cace) => 15-5kl ≤ E For all N > 9N => $\lim_{k \to \infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} d_n = 5$. Note that [d, d2,] is a rearrangement of Ea, az, az, ... 3. Hence any sum 5 can be achieved with a suitable reassagement.

511.7 Strategies of Series Testing
$Q_{3}/f(x) = \frac{x^{2}-1}{x^{2}+1}$
=> $7'(x) = 2x(x^3+1) - (x^2-1)(3x^2)$
$(x^2+1)^2$
$= -x^{3} + 3x^{2} + 2x$
$(x^{3}+1)^{2}$
= -x(x-3)(z+1)
$(x^{3}+1)^{2}$
=> =1(x) <0 i x>3
=> $\left\{\frac{n^2+1}{n^3+1}\right\}$ is eventually demeaning


$$\frac{n^2 - 1}{n^3 + 1} = \frac{1}{n} - \frac{1}{n^3} \longrightarrow 0 \quad as \quad n \longrightarrow \infty$$

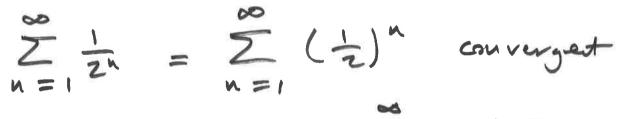
$$1 + \frac{1}{n^3}$$

$$Q5/F(x) = \frac{e^2}{x^2}$$



=>
$$\lim_{n \to \infty} \left\{ \frac{e^n}{n^2} \right\} \neq 0$$

=> $\sum_{n=1}^{\infty} \frac{e^n}{n^2} div.$


22	, ex,	- 22	Cow	tinnous	\Rightarrow	7(2)
cons	tinnous	on CI	, ∞).		
	x) = Z		-		- 23	
	=	2 2 (1	- 3 :	2)e ⁻²	3	
=>	7'(2)					
	7(x)					
Lot	<i>μ</i> = -	x ³ =>	di		<u>ک</u> د ک	
シ	dre =	du -3x2				
=>	$\int x^2 e^{-x}$	n ³ dx	2	$\int \frac{-1}{3} e^{-\frac{1}{3}} e^{-\frac$	e" du	•
8	$\frac{-1}{3}e^{4}$	+ C				
14	-1 = ?? 3 e?	ζ ³ + C				

$$= \int f(x) dx = \lim_{t \to \infty} \frac{-1}{3} e^{-x^3} \Big|_{t}$$

$$= \lim_{t \to \infty} \left(\frac{-1}{3} e^{-t^3} + \frac{1}{3} e^{-t} \right) = \frac{1}{3} e^{-t}$$

00	1-2 <	=>	$\sum_{n=1}$	$\left \frac{\sin Rn}{1+2n}\right $	C94 N.

=>
$$\sum_{n=1}^{\infty} \frac{\sin(2n)}{1+2^n}$$
 conv.

1	sec ² (Lim	1 1/x)	1	Sec ² (0)	=
1					
	Continuous $2c = 0$				
=>	Lim h->>>	san 3	=		
=>(N In	div.	=>	$\sum_{n=1}^{\infty} \tan n$	(^Y n) div)
by	Limit con	ys mison	test.		
Q25/	9n =	n! enz			
	$\left \begin{array}{c} a_{n+1} \\ \hline a_{n} \end{array} \right $		1),	e ^{nc} e ⁽ⁿ⁺¹⁾²	
		= (N+	-i) e	n ² - (n+1) ²	L
		= <u>n</u> e	2n+1	-	
1(x)	$=\frac{2+1}{2x+1}$		-		

 $\lim_{x \to \infty} \frac{2 + 1}{e^{2x + 1}} = \lim_{x \to \infty} \frac{1}{2e^{2x + 1}} = 0$ L'Hospitale => $\lim_{n \to \infty} \left\{ \left| \frac{a_{n+1}}{a_n} \right| \right\} = 0 < 1$ => Z n! convergent by Ratio test. $a_{31} = \frac{5^{k}}{3^{k} + 4^{k}}, \ b_{k} = \frac{5^{k}}{4^{k}}$ $\frac{q_k}{b_k} = \frac{zo^k}{zo^k + 1s^k} = \frac{1}{1 + (\frac{1s}{zo})^k} \rightarrow 1$ as $k \rightarrow \infty \left(\left| \frac{15}{20} \right| < 1 \right)$ $\frac{5}{4}$ > 1 => $\sum_{k=1}^{\infty} \left(\frac{5}{4}\right)^k$ diverged => $\sum_{k=1}^{\infty} \frac{5^k}{3^k+4^k}$ divergent by Limit bA. companiso n