
2	<pre>>, 2] = x² - x - 2 </pre>	2 - x - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	tlohl- 11 11 11 11 11 11 11 tl- y	24 = 100 × 4 × 50 = 2	2 S Brout max
	et s	(x-z)(x+1) => = 2+x-z ² on [-1,2]	value is at mid pout at C-1,2], Max vertical differen is 2 + 1/2 -	So - X IS A - S	50 - 2x = 0 = 2 x = 7 1(w) = 5 x = 25 give a
HW 10 Soluction	B477 Verbiel Diftance	x2-x-2 = => [22-2-2]	25		S SA (X) + + 0

.

d

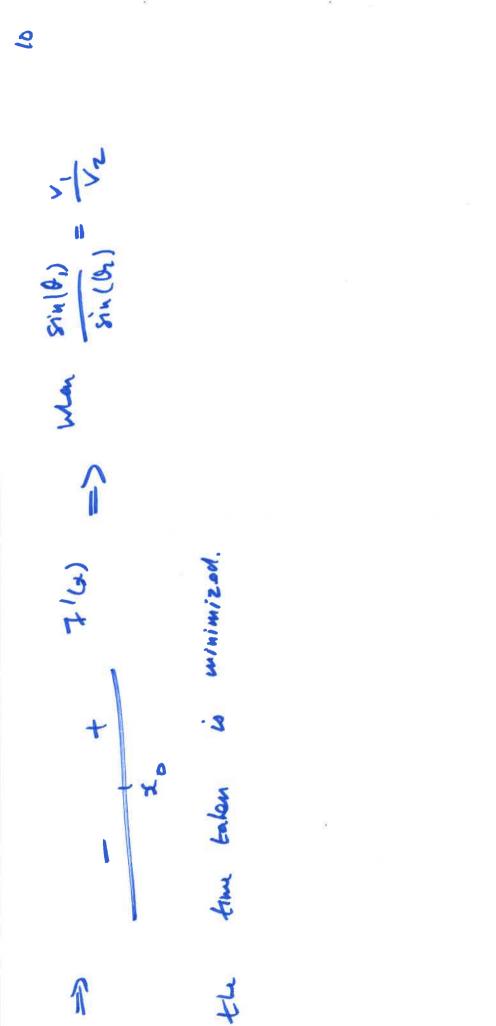
1.5

M

Q = 2x (-13x + 13 L) =46) J Contrast : y = -15 2+ 15 -Area is longer when boar is the out hereat is 13 L =) r= R²-42 (^ < x < F) 5 × × 0 Q = 2xy 2TH (22-42' Contraint : r2+42 = R2 7 y= - V3 x + 25 L => 4'(x) = - 473 x + 5 L 介 Q = 7(h) = 9 = 24. #A 7(H) = 2# B2 - 6# 42 412 t-l (~ (~) (0, <u>1</u>]) 11 K ⋒ (لربع) $4^{1}(x) = 0 \quad (=)$ l 1/L th N + **A** 100 520 10

h= r (=) r=1 R2-R 2 2 Volum of come with bone and higher h Simlar hiogy ha) .H. Z.R. 3 R TT r3 ショート Paduns 7 2 2/2 ۔ م Condrait : +[d " Volume is nex when 11 ±|M 1 1 Nex Volume is ≠[5 1 4 # # R23 þ || _____ ' + ĥ -++2 (+-# ו א ר [/ T 42 - 3 22 シャ(い)= マキモト キモ 介 T ر ±اط 7, (1) 7 Q = +(r) = H - M = (=) 0= (M),4 介 1 943 0

(similar Lianger) 2# H - ポサ/ =0 Nex volum is 562 - 306 ه د اح د 2(5-9) r= 2 = -> 8 | 9 1 3 90 -r Contraint : **М** 11 O 1 N 562 |1 \$ 7,(0) 166(6-3) - 562 1,(r)=0 <=> L=0 A ト = (974 = 0 2(2-9) ١ alr 22 11 4 + 3 450 r D N


-

12+ (1-3)2 -(エー)+ こり this is water Les L 2 equition at the live cutting at sil 9 || || $4(x) = t_1 + t_2 = 7(t_1^2 + x^2)$ 0 Sbirob = 0 (2) bx 0 a b=6 au a = this is all Need to minimize 5 1 1 1 1 1 1 1 Min anew t_= . 3 1 2 0 к 0 1 (9),t + R absolute min 1 L2 + (L-x) 12+27 4'(b)=0 S וו גר Queen (Hand) minimal when 1 2 140

1-2+11-25 1 00 are bold trutters in 21) (x) 20 m (x) 10 / Prot 0,(x) al Or(x) an both continuous Fundings in したナント Claim I Thur is a value of x for which this hypers 5 $4^{1}(0) = sin(0) - sin(0_{2}(0)) + 2 > 0_{2}(0) > 0$ u -(E-1)+2-1/2/2 $Sim (Sim (S_z(x)))$ -2(1-2) >a 5 in (O2(2)) = sin (0, (=)) => 7'(x) is continuous. + > 7'(0) < 0 ((س) الماري) 241112+22 5 22 オ'(エ) = 0 (エ) 1 7'(2) =

$\frac{1}{2} \cdot 0_{1}(L) = \sin(0_{1}(L)) = \sin(0) = \sin(0_{1}(L))$ $\frac{1}{2} \cdot 0_{1}(L) > 0 = \frac{1}{2} \cdot 1$	By H_{V} : T thus with x_{0} is $C_{0,LJ}$ s.t. $x_{0} = 0$, is the sin $(B_{1}(x_{0})) = \frac{V_{1}}{V_{2}}$.	$\frac{1}{2} \sum Tui grus an absolute un the theo.$ $P_{0}(x) = \frac{1}{2} (x) =$
4'(L) #12 > 0,(L	=> 13y	n n la

θ-

0.0

 $G(t) = \frac{1}{-t+1} + \frac{1}{2t+1} + \frac{1}{2t+1$ > C= -2-12 $2 + (1+2^{2} + 1) + (1+2^{2}$ $|-= 7+2+1 = (+)_{+}$ 915 g(H) = t-z + t 2, + 2,2 (7) + (+) = 2ec2(+) + Jo((+) + (+) > 7(+) = 1 (+) + x, (+) + C $F(u) = x^{2} + \frac{1}{4} + \frac{1}{x} + \frac{1}{x} + c$ 94 x - <u>e</u> x 2 - 3x³ + C Q21 # x=) = Zz + 4 - x-2 aig ezz + C 54.4

=> 1(7)= ton (4) + 200 (4) - 2 - 12

941 7"(0)= Su0+c=0 = 7'(0)= -c=0+110+1

7'(0)=4 = C= S => 7'(0) = -cro + nu0 + S > + (0) = - x,0 - co 0 + 50 + C 7(0)=3 3 C= 4 5 7(0)=-11,0-0,0+50+4

 $t''(o) = 3 \Rightarrow C = 3 \Rightarrow t''(x) = su(x) + 3$ $Q_{4} = T^{(n)} = C_{4} = T^{(n)} = T^{(n)}$

 $\frac{1}{2}(0) = 2 \implies C = 3 \implies \frac{1}{2}(2) = -\cos(2) + 3z + 3$ => 7/(2) = - cr2 (2) + 3x + C

 $7(0) = 1 \implies C = 1 \implies 7(0) = -8i_{1}(0) + \frac{3}{2}22 + 3x + 1.$ $= \frac{1}{2} + \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} + \frac$

$4'(x) = 3 - 4x = 34 - 5x - 2x^{2} + C$	2)=5 = 5 = 6 - 8 + C = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =	ath = 2t+1 => 19	V Co) = -2 = -3 - V CH = +2++-2 > 5(+) = -3+3++2+2++C	2(0)=) = 5(4) = -2+2+2+2+2+2	$s(t) = log_{11}(t) + 3c_{11}(t) = -loc_{11}(t) + 3c_{11}(t) = -loc_{11}(t) + 3c_{11}(t) + 1$ $s(t) = -loc_{11}(t) - 3c_{11}(t) + 1 + 1 + 1$ s(0) = 0 = 1	2
448 = (x) =	7(2)= S = 12)= S	Ac a Ct		5 (a) =)	= (+) = (+) = (+) 2 (+) = S (0) = 0	5 (حمر) = 12

*:

. *

.

5

.....

1.5

. + 90× 2200 × (15×60 - 40 × 5280) #4. Po × 5230)× (a × 5280) × 7 (4 × 3600)× (a × 5280) × 7 $\Rightarrow V(H) = a_{1} + V_{0} \Rightarrow S(H) = \frac{1}{2}a_{1}z_{1}+v_{0}z_{1}+s_{0}$ 979/ This gustion is autrel beam in her to Sudich between 5280 #4/1ec 3600 #4/1ec 3600 × 90 72/5 IS × 60 (IS mine) Max diftau traubled in 15 mrs = 5280 units. I mile per how = N not use an of C= 280 90 × 360 que act) = a 3 G) 5880 ax see

40 × 32680 × (15×60) - 4 × 3 400 40 5280 Ser 5280 . (40× 5280) 3600) . (40× 3600) บ # 40 5280) . (46 × 5280) = area under graph + 000 × 01 t|9 Nex ditie ς Σ ÷ t. -16 4° 1 45= Differen = (15×60) - (40 × 5280 oyx SI $-(09 \times 5 \times 6))$ 4 R 0 46 × 3680 p Diftau + 01 7 9 5