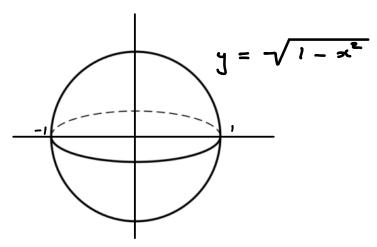
Volumes

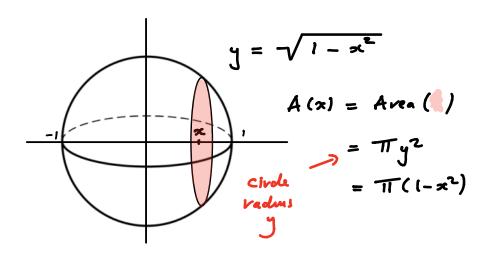
Q: What is the volume of a sphere of radius 1?

First solved by

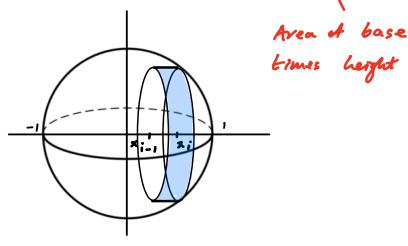
— Avohimedes (287 BC -212 BC)


> We know volume of a cylinder

Basic Stratogy: Approximate Sphere by Cylindus to higher and higher accuracy.


Pioture :

 $\frac{5 \text{ tep } 1}{\text{Observe top is given by } y = \sqrt{1-x^2}$



 $\frac{St \varphi^2}{} : Diffine A(x) = avea of cross-section of sphere at x$

Step 3: For each a, a natural number, subdiviole [-1,1] into a equal subintervals of length $\Delta x = \frac{z}{n}$.

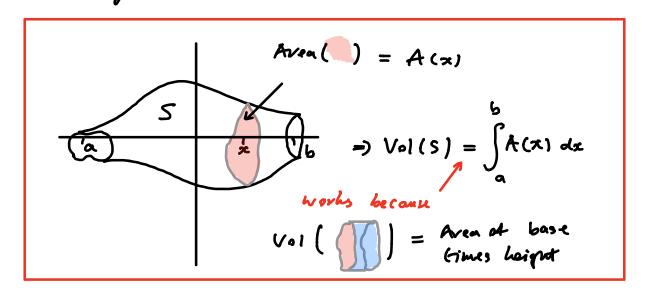
Step 4: Over the subinverval [x:1,xi] draw the cylindres of height Bx and radius f(x;) Volume et jen cylinder = TI(x;)2 Ox

Stop 5 Sum the volumes appenders and take a limit as $n \rightarrow \infty$ Ziemann Sum

 \Rightarrow Volume of Sphere = $\lim_{n\to\infty} \sum_{i=1}^{n} A(x_i) \Delta x_i$ By definition $\Rightarrow = \int A(x) dx$ of detruite integral = \int (1-x2) dx $\pi \times - \frac{\pi}{3} \times^3 \Big| = \frac{4}{3} \pi$

(Archimodes dodn't knowthis)

More ganerally:


Volume et a sphere

of vadius
$$r$$

$$= \pi r^2 x - \frac{\pi}{3} x^3 \Big|_{-r}^{2} = \frac{4}{3} \pi r^3$$

Awesome

What about different solid shapes? Same logic =>

Important Example: Solid of revolution

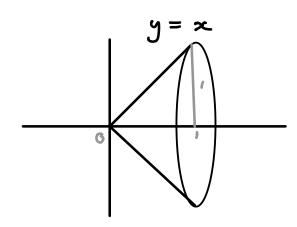
$$y = +(x)$$

Solid formed by

rotating $y = +(x)$

around $x - axis$.

Volume of Solid

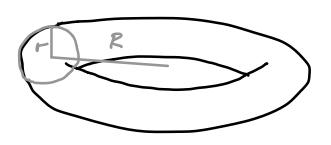

of verolation of

$$y = f(x)$$
 between

 $f(x)^2 dx$
 $f(x)^2 dx$
 $f(x)^2 dx$

Example

What is the volume of a cone with raduo / and beight 1?



=) Volume =
$$\int_{0}^{1} \pi x^{2} dx = \frac{\pi}{3}x^{3}\Big|_{0}^{1} = \frac{\pi}{3}$$

More generally:

Volume et
cone et molins =
$$\int_{0}^{\pi} (\frac{r}{n}x)^{2} dx = \frac{1}{3}\pi r^{2}h$$

 r and height h

2) What is the volume of a solid circular donat with the tollowing demensions:

Potested x viving $y = \sqrt{r^2 - x^2} + R$ area of circle large circle

 $=) A(x) = \pi \left(\sqrt{r^2 - x^2} + R \right)^2 \text{ area}$ $-\pi \left(-\sqrt{r^2 - x^2} + R \right)^2 \text{ area of senions of a senion$

=) Volume = $\int_{-r}^{r} \pi \cdot 4R \sqrt{r^2 - x^2} dx = 4\pi R \int_{-r}^{r} \sqrt{r^2 - x^2} dx$ = $4\pi R \cdot \frac{1}{2}\pi r^2 = 2\pi R \cdot \pi r^2$ Condusion: To calculate volume of soud S:

- 1/ Sit S in xy-plane with x = a and x = b at ends
- 2 Determine cross-section area function A(x)
- 3 Vol(s) = \int_{a}^{b} A(x) dx \int_{FTOC.}