Tangents and Velocity

Motion in a straight line : t = time in seconds 5(t) = position at time t (in meters From 0)

$$\underbrace{ \leftarrow \overset{}{\mathcal{F}} \rightarrow}_{\circ \qquad s(+)}$$

Q: What is my velocity at a single moment in time? Let a < b < two distinct moments in time Overall displayonment bet

 $\frac{A \text{ verage velocity}}{between \ t=a \ and \ t=b} = \frac{O \text{ verall displacement between}}{Time \ elapsed \ between \ t=a} = \frac{5(b) - 5(a)}{b-a}$

Observation: y = 5(t) - 5(t)

DeFinition

The instantaneous velocity at time t=a is the slope of the tangent line at (a,s(a)). <u>Problem</u>: We only know (a,s(a)) is on tangent line. We usually need two points to calculate slope.

 $\frac{E \times anple}{F(t) = t^2}, a = 1, b > 1$

b	Average Vi between t=	clocity		
1.1	2.1		Cooks like	its getting
1.01	2.01		close to 2.	Need to
1.001	2.00)	~	be certain.	
1.0001	2.000)			

More systematice: $\frac{5(b) - 5(1)}{b - 1} = \frac{b^2 - 1}{b - 1}$ $b > 1 \implies \frac{b^2 - 1}{b - 1} = \frac{(b + 1)(b - 1)}{b - 1} = b + 1$

Aim : Develop these ideas in general.