

Important : Many possible vertical strips will work (just lower the width). What matters is that at least one exists.

Picture

Most Precise Definition of $\lim_{x \to a} F(x) = L$ a tree choice of horizontal strip a vertical strip Given $\xi > 0$, there exists $\xi > 0$ (which depends on ξ) Such that

$$O < |x-a| < S \implies |f(x)-L| < \varepsilon$$

$$\uparrow \qquad \uparrow$$

$$(x,f(x)) \text{ in vertical strip} \qquad (x,f(x)) \text{ in horizontal}$$

$$x \neq a \qquad \qquad strip$$

Important		१ २०	75 C	a completely Tree choice. To be) L
Sure	Lim	7(x) =	٢	he	need	to Find	a diff	event	8 20
	7C → C	2				7			e alem
40 <i>v</i>	each	٤ >٥.				Could be	e really	challen	grz
Era		(inc. 3	7~						

Try
$$S = \frac{E}{2} > 0$$

Need to be sure
 $0 < |x - 1| < \frac{E}{2} = 2|2x - 2| < 2$
But
 $0 < |x - 1| < \frac{E}{2} = 2|x - 1| < 2$
 $= 2(x - 1)| < 2$

<u>Remarks</u>
Y This example was relatively straightforward as g=f(x)
was a straight line. It not, it could be much
more challenging. E.g. Lim x² = 1
z. Every limit law / property can be rigorously domonstrated
using this (E,S) - language.
3 It we replace 0 < 1x-a | < 5 with a < x < a + 5</p>
we get Lim f(x) = L.

It we replace
$$0 < |x - a| < \delta$$
 with $a - \delta < x < a$
we get $\lim_{x \to a^{-}} F(x) = L$

Precise Diffuction of
$$\lim_{x \to a} F(x) = \infty$$

Given any $M > 0$, there exists $S > 0$ (which depends on M)
such that
 $0 < |x-a| < S \Rightarrow F(x) > M$ (S) in vertical strip,
 $x \neq a$, $f(x) > M$
M
M
 M
 $a - S | a | a + S$

 $\frac{Important}{I}: M > 0 \text{ is as big as we want, hence}$ F(x) grows positively without bound.

Remark

We define
$$\lim_{x \to a} f(x) = -\infty$$
 replacing $M \ge 0$ note $N \le 0$
and $f(x) \ge M$ with $f(x) \le N$.