Midtenen 2 Review
f- function

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}= \text { slope of } \\
& \text { tangent erie } \\
&\text { at (} x, y) \\
& \text { Derivation of } \\
& \frac{d}{d x}(f(x))=\frac{d y}{d x}= f \text { with } \\
& \text { respect to } x
\end{aligned}
$$

$$
y=f(x) \Rightarrow f^{\prime}(x)=\frac{d}{d x}(f(x))=\frac{d y}{d x}=\begin{aligned}
& \text { Derivation } \\
& \text { respect } t
\end{aligned}
$$

Core Derivatives

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{r}\right)=r x^{r-1}, \frac{d}{d x}\left(b^{x}\right)=\ln (b) b^{x}, \\
& \frac{d}{d x}\left(\log _{6}(x)\right)=\frac{1}{\ln (b) x}, \frac{d}{d x}(\sin (x))=\cos (x), \\
& \frac{d}{d x}(\cos (x))=-\sin (x), \frac{d}{d x}(\tan (x))=\sec ^{2}(x), \\
& \frac{d}{d x}(\arcsin (x)) / \frac{d}{d x}(\arccos (x))=\frac{1}{\sqrt{1-x^{2}}} / \frac{-1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arctan (x))=\frac{1}{1+x^{2}}
\end{aligned}
$$

Rules of Differentiation
Sum/Dïtwence Rale: $(7 \pm g)^{\prime}=7^{\prime} \pm g^{\prime}$ constant
Constant Multiple Rale: $(c \neq)^{\prime}=c 7^{\prime}$
Product Rale : $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
Quotient Rale : $\left(\frac{1}{g}\right)^{\prime}=\frac{7^{\prime} g-f g^{\prime}}{g^{2}}$
Chain Rule : $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
Important Special Cases :

$$
\frac{d}{d x}\left(e^{g(x)}\right)=e^{g(x)} \cdot g^{\prime}(x), \frac{d}{d x}(g(x))^{r}=r(g(x))^{r-1} \cdot g^{\prime}(x)
$$

$$
\frac{d}{d x}(\ln (g(x)))=\frac{g^{\prime}(x)}{g^{(x)}} \Rightarrow g^{\prime}(x)=g(x) \frac{d}{d x}(\ln (g(x))
$$

Worst case Senavio:

$$
g(x)=\frac{\left(x^{2}+1\right)^{\tan (x)} \cdot(\ln (x))^{x}}{\sqrt{(3 x+1)}} \Rightarrow g^{\prime}(x)=\text { ? }
$$

$$
\left.\begin{array}{rl}
\ln (g(x))= & \tan (x) \ln \left(x^{2}+1\right)+x \ln (\ln (x)) \\
& -\frac{1}{2} \ln (3 x+1) \\
\Rightarrow \frac{d}{d x} \ln (g(x))= & \sec ^{2}(x) \ln \left(x^{2}+1\right)+\tan (x) \frac{2 x}{x^{2}+1} \\
& +\ln (\ln (x))+x \cdot \frac{\left(\frac{1}{x}\right)}{\ln (x)} \\
& -\frac{1}{2} \frac{3}{3 x+1} \\
\Rightarrow g^{\prime}(x)= & \frac{\left.\left(x^{2}+1\right)^{\tan (x)} \cdot \ln (x)\right)^{x}}{\sqrt{(3 x+1)}} \leftarrow g(x) \\
\quad \sec 2(x) \ln \left(x^{2}+1\right)+\tan (x) \frac{2 x}{x^{2}+1} \\
& +\ln (\ln (x))+x \cdot \frac{\left(\frac{1}{x}\right)}{\ln (x)} \\
& -\frac{1}{2} \frac{3}{3 x+1}
\end{array}\right)
$$

It you see products/quotients at functions like $g(x)^{n(x)}$ us this method.

Determining $\frac{d y}{d x}$
Ovenvien of Implic it Diftenantiction from an equation involving x and y
I) Differentiate both sides of equation with respect to x

2 Using Laws of drrenentiation (Product, Chain, Sam....) expand both sides coil everything is expressed in terms of $x, y, \frac{d y}{d x}$
3 Solve in $\frac{d y}{d x}$.
Example Find slope of tangent to $y^{3}-x^{2}=2+y$ at $(2,2)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{3}-x^{2}\right)=\frac{d}{d x}(2+y) \\
\Rightarrow & 3 y^{2} \frac{d y}{d x}-2 x=\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{2 x}{3 y^{2}-1} \\
\Rightarrow & \left.\frac{d y}{d x}\right|_{\substack{x=2 \\
y=2}}=\frac{4}{11}
\end{aligned}
$$

Constant

$$
k>0 \text { =growth }
$$

Natural Growth/Decary

$$
k<0=\text { decay }
$$

$y=f(t)$ experiences natural growth/decay $\Leftrightarrow \frac{d y}{d t}=k y$ constant $=y(0)$ Fact : $\frac{d y}{d t}=k y \Leftrightarrow y(t)=C e^{k t}$
Main Examples:
Natural Population Growth, Radioadtore Decay, Newton's Law of cooling.

Example : A radioactive material has mass 10 kg on the 1 st of January 2006 and 3 kg on the 1 st of Jannoury 2015. When will the mass be 2 kg ?
$\mu(t)=$ Mass at time t (in years attu $01 / 01 / 2006$)

$$
\begin{aligned}
& \Rightarrow M(0)=10 \text { and } M(t)=C_{e}^{k t} \Rightarrow M(t)=10 e^{k t} \\
& M(9)=10 e^{9 k}=3 \Rightarrow k=\frac{\ln \left(\frac{3}{10}\right)}{9} \\
& \Rightarrow M(t)=10 e^{\frac{\ln \left(\frac{3}{10}\right)}{9} t} \\
& M(t)=2 \Rightarrow 10 e^{\frac{\ln \left(\frac{3}{10}\right)}{9} t}=2
\end{aligned}
$$

$\Rightarrow t=\frac{9 \ln \left(\frac{2}{10}\right)}{4 u\left(\frac{3}{2}\right)}$ The mass is 2 kg
this many years attorn 01/01/2006.

Intermediate Value Thenar (I.V.T.)
f - cts on $[a, b]$ There exists c such that $f(a) \leq d \leq 7(b)$

$$
\Rightarrow \quad f(c)=d
$$

$$
f(b) \leq d \leq f(a)
$$

I.V.T. tells us about values of f Used to prove 7 takes specific values

Mean Value Theremin (I.V.T.)
f - cts on $[a, b]$ There exists c such that
7 - diff. on $(a, b) \quad \Rightarrow \quad f^{\prime}(c)=\frac{7(b)-4(a)}{b-a}$

M.V.T. tells us about values of f^{\prime} Used to prove f^{\prime} takes specific values

Example : Show that $f(x)=e^{x}+2-7 x^{2}$ has exactly 3 roots. differentiable on \mathbb{R} 1/ Use I.V.T. to show at least 3 roots.

$$
\begin{aligned}
& f(-1)=e^{-1}+2-7=e^{-1}-5<0 \\
& f(0)=3>0 \\
& f(1)=e+2-7<0 \\
& f(10)=e^{10}+2-700>0
\end{aligned}
$$

I.V.T. \Rightarrow There are roots in $(-1,0),(0,1),(1,10)$

2 Use M.V.T. to show at most 3 roots.
Assume $f(x)$ has 4 roots A, B, C, D
Observation
M.V.T. \Rightarrow If $g(a)=g(b)=0 \Rightarrow g^{\prime}(c)=0$ for some c in (a, b)

Condurion
7 has 4 roots $\Rightarrow 7$ "I has a root

$$
f(x)=e^{x}+2-7 x^{2} \Rightarrow 7^{\prime \prime \prime}(x)=e^{x} \neq 0
$$

$\Rightarrow 7$ cannot have 4 roots
\Rightarrow I has exactly 3 roots.
Sign Analysis: Determining when $g(x)>0$ and $g(x)<0$.
1, Find all type $A /$ ana $B /$ points.
y Find all type $A /$ and $B /$ points.
2) Draw number line, monk $A / / B /$ points and test sign around them.
Picture:

Derivatives and Curve sketching
Central Foots:

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { on }(a, b) \Rightarrow 7 \text { increasing on }(a, b) \\
& f^{\prime}(x)<0 \text { on }(a, b) \Rightarrow 7 \text { decreasing on }(a, b)
\end{aligned}
$$

$f^{\prime \prime}(x)>0$ on $(a, b) \Rightarrow 7$ concave up on (a, b)
$f^{\prime \prime}(x)<0$ on $(a, b) \Rightarrow f$ concavedown on (a, b)

$\Rightarrow(c, 7(c))$ In7leation
$\Rightarrow(c, 7(c))$ In7leation

Curve Sketching Checklist:
1 Domain
2/ Odd/Even
3 Ventical Asymptotes \longleftarrow L'Hospital?
4/ Behovion at $\pm \infty<$ Hrirontal/slont asymptotes?
5. Sigu Analyixs of $7^{\prime} \leftarrow$ Increasing / Decreasicy / Local max/min
6/ Sign Analysis of 7 " \leftarrow Concanity / Infleations
7 Mank key points and pat everything togettor

Domain $=[a, b]$
Find critical number and evaluate at 4

Finding Absolute Max/Min of $7(x)$

Domain $=(a, b)$
Pray theme is one critical number where there is a local maximin.

Constrained Optimization Checklist
Y Objective quantity to be maximized / minimized?
2/ Drown Picture and Label unknowns
3 Give objective ni terms of antenowns.
4) Give constraint in terms of unknowns

3/ Solve constraint in one unknown and sub into object re giving 7 a single variable function
6 Identity appropiate domain and Find abs. maximin.

