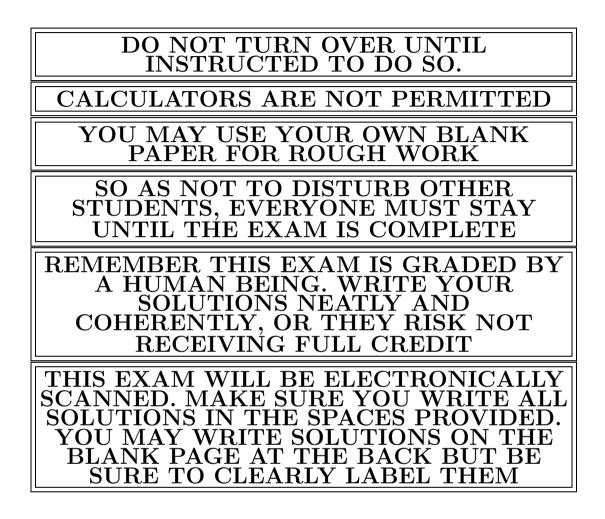
MATH 1A MIDTERM 2 (PRACTICE 3) PROFESSOR PAULIN



Name: _____

Student ID: _____

GSI's name:

Math 1A

This exam consists of 5 questions. Answer the questions in the spaces provided.

- 1. Calculate the following:
 - (a) (10 points)

$$\frac{d}{dx}(\arcsin(\sqrt{1-x^2}))$$

Solution:

$$\frac{d}{d\chi}(\operatorname{avcsin}(\chi)) = \frac{1}{\sqrt{1-\chi^2}}$$

$$\frac{d}{d\chi}(\sqrt{\chi}) = \frac{1}{2\sqrt{\chi}} = \frac{1}{2\sqrt{\chi}} = \frac{1}{d\chi} = \frac{1}{d\chi}(\operatorname{avcsin}(\sqrt{1-\chi^2})) = \frac{1}{d\chi}(1-\chi^2) = -2\chi$$

$$\frac{1}{\sqrt{1-(\sqrt{1-\chi^2})^2}} = \frac{1}{2\sqrt{1-\chi^2}} - 2\chi$$

(b) (15 points)

$$\lim_{x \to \infty} (x - \ln(2x))$$

Solution:

$$\chi - 4u(2\pi) = \pi \left(1 - \frac{4u(2\pi)}{\pi}\right)$$

$$\lim_{z \to \infty} \frac{4u(2\pi)}{\pi} = \lim_{z \to \infty} \left(\frac{\frac{z}{2\pi}}{1}\right) = 0 \implies \lim_{x \to \infty} 1 - \frac{4u(2\pi)}{\pi} = 1$$

lim z = ~

 $=) \quad \lim_{x \to \infty} \infty - \ln(2x) = \infty$

2. (25 points) An warm object is placed in a room with constant background temperature. It cools according to Newton's Law. At 1pm the object is 40 degrees Celsius, at 2pm the object is 30 degrees Calcius and at 3pm the object is 25 degrees Celcius. What is the temperature of the room?
Solution: $\xi = 0$ is $l pm$
T(t) = object temperature at time t (in hours)
$N \cdot (.(. =) T(+) = (e^{kt} + T_s)$
T(0) = 40 = -7 + 7s = 40 = -7 + 20 - 7s
$\tau(1) = 30 \Rightarrow Ce^{k} + T_{s} = 30 \Rightarrow (40 - T_{s})e^{k} + T_{s} = 30$
$T(z) = zs \Rightarrow Ce^{zk} + T_s = zs \Rightarrow (40 - T_s)e^{zk} + T_s = zs$
=) $e^{k} = \frac{30 - T_{s}}{40 - T_{s}}$, $e^{-k} = \frac{2s - T_{s}}{40 - T_{s}}$
$= \frac{(30 - T_5)^2}{(40 - T_5)^2} = \frac{25 - T_5}{40 - T_5} = (30 - T_5)^2 = (25 - T_5)(40 - T_5)^2$
$\Rightarrow 900 - 60T_5 + T_5^2 = 1000 - 65T_5 + T_5^2$
$5T_{s} = 100 = 7 T_{s} = 20^{\circ}C_{s}$

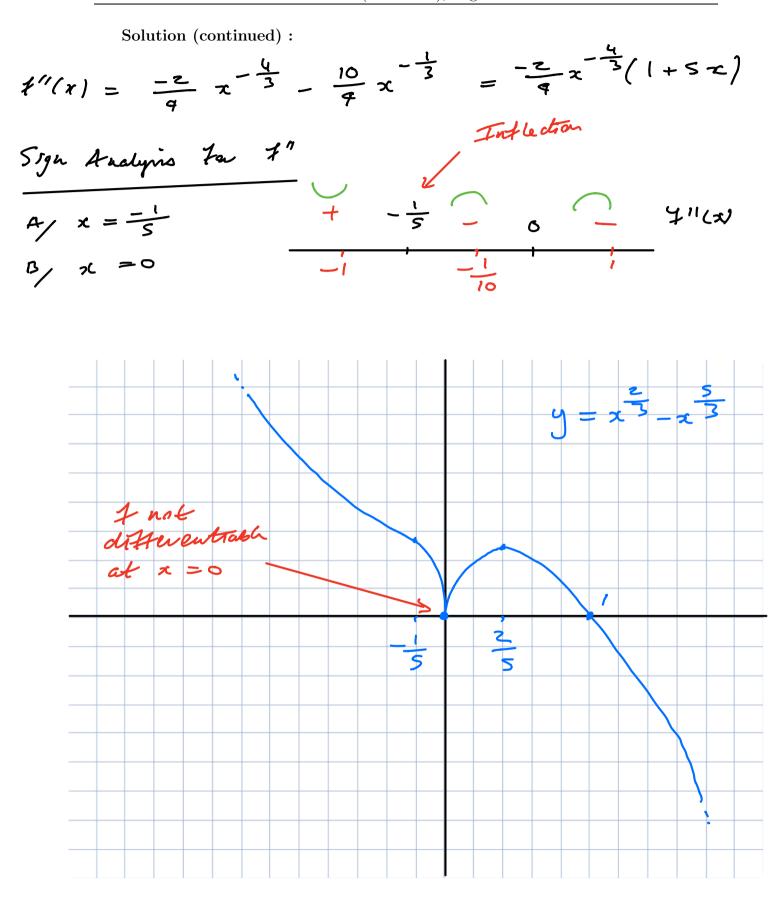
3. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$y = x^{2/3} - x^{5/3}$$

You do not need to give exactly y-coordinates for inflections and local extrema.

Solution: $x^{2/3} - x^{5/3} = x^{2/3}(1-x)$ f(x) =R Domain : Odd / Even : Neither Vertical asymptotes : None Behavior at + ~ Lin ≈→±∞ x $\frac{3}{2}(1-x) = -\infty$ Lim エーヘ Lim I-x $x^{2}((-x) = \infty$ Lim 1-x パーシーの Sign Analysis For 7 コノシ 1 0 K/ K=0, 1 2 -1 B, Noue $\frac{1}{2}(x) = \frac{2}{3}x^{-\frac{1}{3}} - \frac{5}{3}x^{\frac{2}{3}}$ $\frac{1}{3\pi^{\prime}3}(2-5\pi)$ = (ocal max Sign Analysis For 7' Local min + > 7'A $A/z = \frac{z}{z}$ i. メーの -1 1 5

PLEASE TURN OVER



PLEASE TURN OVER

4. (25 points) Let $f(x) = \sqrt{x}$. What are the absolute extrema of the derivative, f'(x), on the interval [4,5]? Using this information, along with the Mean Value Theorem, prove that

$$20/9 \le \sqrt{5} \le 9/4$$

Solution:

$$f'(x) = \frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{7}x^{-\frac{1}{2}} = \frac{-1}{4}x^{-\frac{3}{2}} = \frac{-1}{4x^{3/2}}$$

$$\begin{array}{c} f'(4) = \frac{1}{4} > f'(s) = \frac{1}{2\sqrt{s}} \Rightarrow \frac{1}{2\sqrt{s}} \leq f'(x) \leq \frac{1}{4} \\ T \\ Abs. Max \\ \end{array}$$

$$M.U.T \Rightarrow \frac{1}{z\sqrt{s}} \leq \frac{1}{(s) - 1} \leq \frac{1}{4}$$

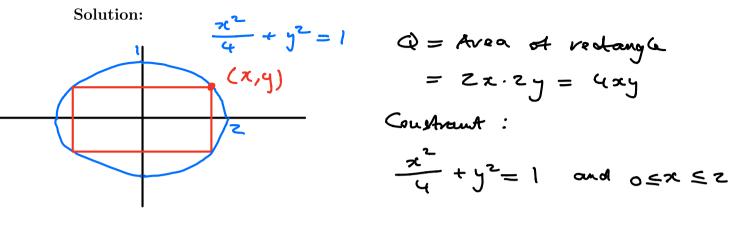
$$\Rightarrow \frac{1}{z\sqrt{s}} \leq \sqrt{s} - 2 \leq \frac{1}{4} \Rightarrow 1 \leq 10 - 4\sqrt{s} \leq \frac{1}{2\sqrt{s}}$$

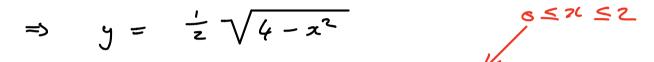
$$1 \leq 10 - 4\sqrt{s} \Rightarrow \sqrt{s} \leq \frac{9}{4}$$

$$1 \leq 10 - 4\sqrt{s} \Rightarrow \sqrt{s} \leq \frac{9}{4}$$

$$4\sqrt{5} \le \frac{1}{2}\sqrt{5} = 3$$
 $10 \le \frac{1}{2}\sqrt{5} = 3$ $\frac{20}{9} \le \sqrt{5}$

5. (25 points) Find the area of the largest rectangle that can be inscribed in the ellipse $x^2/4 + y^2 = 1$.





=)
$$Q = 4xy = 2x\sqrt{4-x^2} = 4(x)$$

$$\frac{1}{(\kappa)} = 2\sqrt{4-x^2} + 2x \frac{-2\pi}{2\sqrt{4-x^2}} = \frac{8-4x^2}{\sqrt{4-x^2}}$$

F(0) = 0, F(2) = 0, $F(\sqrt{2}) = 2 \cdot \sqrt{2}(\sqrt{4 - (\sqrt{2})^2}) = 4 > 0$

Abs. Max on [0,2]

=> largest Area.

END OF EXAM