MATH 1A MIDTERM 2 (PRACTICE 2) PROFESSOR PAULIN

\qquad

Student ID: \qquad
\qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Calculate the following:
(a) (10 points)

$$
\frac{d}{d x} \sqrt{\arctan \left(x^{3}\right)+1}
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}} \\
& \frac{d}{d x} \arctan (x)=\frac{1}{x^{2}+1} \Rightarrow \frac{d}{d x} \sqrt{\arctan \left(x^{3}\right)+1}=\frac{1}{2 \sqrt{\arctan \left(x^{3}\right)+1}} \cdot \frac{1}{\left(x^{3}\right)^{2}+1} \cdot 3 x^{2} \\
& \frac{d}{d x}\left(x^{3}\right)=3 x^{2}
\end{aligned}
$$

(b) (15 points)

$$
\lim _{x \rightarrow \infty} x^{1 / x}
$$

Solution:
$x^{\frac{1}{x}}=e^{\frac{\ln (x)}{x}}=$ L'Hospilal
$\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{1}=0$
$\Rightarrow \lim _{x \rightarrow \infty} x^{\frac{1}{x}}=\lim _{x \rightarrow \infty} e^{\frac{\ln (x)}{x}}=e^{\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}}=e^{0}=1$
2. (25 points) Consider the curve given by the equation $4 x^{2}+y^{2}=4$. Determine all tangent lines to this curve which pass through the point $(2,0)$.
Solution:

$$
\frac{d}{d x}\left(4 x^{2}+y^{2}\right)=\frac{d}{d x}(4) \Rightarrow 8 x+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{-4 x}{y}
$$

Slope at tangent at
(L $x, y)$

$$
\begin{aligned}
& \frac{-4 x}{y}=\frac{y-0}{x-2} \Rightarrow-4 x(x-2)=y^{2} \\
& 4 x^{2}+y^{2}=4 \\
& \Rightarrow y^{2}=4-4 x^{2} \\
& -4 x(x-2)=y^{2} \\
& \Rightarrow \quad-4 x(x-2)=4-4 x^{2} \\
& \Rightarrow \quad-4 x^{2}+8 x=4-4 x^{2} \\
& \left.\Rightarrow 8 x=4 \Rightarrow x=\frac{1}{2} \Rightarrow x^{2}=0\right) \\
& x=\frac{1}{2} \Rightarrow 4 \cdot\left(\frac{1}{2}\right)^{2}+y^{2}=4 \Rightarrow y^{2}=3 \Rightarrow y= \pm \sqrt{3}
\end{aligned}
$$

There are two tangent lines that pass though $(2,0)$, the one at $\left(\frac{1}{2}, \sqrt{3}\right)$ and the one at $\left(\frac{1}{2},-\sqrt{3}\right)$.
3. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{e^{2 x}}{x}
$$

Solution:

Domain: $\quad(-\infty, 0) \cup(0, \infty)$
Oad/Even: Neither

Vertical Asymptotes:

$\frac{\text { Behavion at } \pm \infty}{\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x}=\lim _{x \rightarrow \infty} \frac{2 e^{2 x}}{1}=\infty, \text { litospital }}=$
$\lim _{x \rightarrow-\infty} e^{2 x}=0 \Rightarrow \lim _{x \rightarrow-\infty} \frac{e^{2 x}}{x}=0 \Rightarrow y=0$ horizontal asyuptote $f^{\prime}(x)=\frac{2 e^{2 x} x-e^{2 x}}{x^{2}}=e^{2 x}\left(\frac{2 x-1}{x^{2}}\right)=e^{2 x}\left(\frac{2}{x}-\frac{1}{x^{2}}\right) f^{f\left(\frac{1}{2}\right)=2 e} \operatorname{locd} \quad$ min
A/ $x=0$

Solution (continued) :

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 e^{2 x}\left(\frac{2}{x}-\frac{1}{x^{2}}\right)+e^{2 x}\left(\frac{-2}{x^{2}}+\frac{2}{x^{3}}\right) \\
& =e^{2 x}\left(\frac{4 x^{2}-2 x-2 x+2}{x^{3}}\right)=2 e^{2 x}\left(\frac{2 x^{2}-2 x+1}{x^{3}}\right)
\end{aligned}
$$

$2 x^{2}-2 x+1 \neq 0$ for all x as $(-2)^{2}-4.2 .1<0$
A/ Nome
B/ $\quad x=0$
Not Inflection

4. (25 points) Show that the following equation has exactly one real solution. Be sure to carefully justify you answer clearly stating any results you use from lectures.

$$
\arctan (x)=2+7 x
$$

Solution:
Continuous on \mathbb{R}
Let $f(x)=\arctan (x)-2-7 x$

$$
\begin{aligned}
& \frac{-\pi}{2}<\arctan (x)<\frac{\pi}{2} \Rightarrow f(10)<0 \\
& 7(-10)>0
\end{aligned}
$$

I.V.T. \Rightarrow There exists x such that $f(x)=0$

Assume tare exit $a<b$ such that $f(a)=f(b)=0$
M.V.T. \Rightarrow There exists c such that

$$
\begin{gathered}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0 \\
f^{\prime}(x)=\frac{1}{x^{2}+1}-7<0 \quad \text { for all } x
\end{gathered}
$$

Hence no such c exists \Rightarrow There is exactly one solution to

$$
f(x)=0
$$

5. (25 points) What is the maximum possible value of $x+6 y$ subject to the constraint $x+y^{2}=4$, where x and y are non-negative real numbers.
Solution:
Objective : Maximize $x+6 y$
Constraint: $x+y^{2}=4, x-y \geqslant 0$

$$
\begin{aligned}
& x+y^{2}=4 \Rightarrow x=4-y^{2} \Rightarrow x+6 y=\left(4-y^{2}\right)+6 y=f(y) \\
& x, y \geqslant 0 \text { and } x+y^{2}=4 \Rightarrow y \leqslant 2
\end{aligned}
$$

Domain $=[0,2]$

$$
f^{\prime}(y)=-2 y+6
$$

A/ $y^{\prime}(y)=0 \Rightarrow y=3$
B/ 71 contminons everywhere
$\Rightarrow 0,2$ ave only critical number on $[0,2]$

$$
\begin{aligned}
& f(0)=4 \\
& f(2)=12
\end{aligned}
$$

\Rightarrow The maximum possible value $4 x+6 y$ is 12 under the condition $x+y^{2}=4$ and $x, y \geqslant 0$

