MATH 1A MIDTERM 2 (PRACTICE 1) PROFESSOR PAULIN

\qquad

Student ID: \qquad
\qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the derivatives of the following functions (you do not need to use the limit definition):
(a) (10 points)

$$
e^{\frac{\arccos (x)}{x}}
$$

Solution:

$$
\frac{d}{d x}\left(\frac{\arccos (x)}{x}\right)=\frac{\frac{-1}{\sqrt{1-x^{2}}} \cdot x-1 \cdot \operatorname{arcos}(x)}{x^{2}}
$$

Chain Rule \Rightarrow

$$
\frac{d}{d x}\left(e^{\left(\frac{\operatorname{arcos}(x)}{x}\right)}\right)=e^{\frac{\operatorname{arcos}(x)}{x}} \cdot\left(\frac{\frac{-1}{\sqrt{1-x^{2}} \cdot x}-1 \cdot \operatorname{arcos}(x)}{x^{2}}\right)
$$

(b) (15 points)

$$
\sqrt{x}^{\sqrt{x}}
$$

Solution:

$$
\begin{aligned}
& f(x)=\sqrt{x}^{\sqrt{x}} \Rightarrow \ln (f(x))=\sqrt{x} \ln (\sqrt{x})=\frac{1}{2} \sqrt{x} \ln (x) \\
& \frac{d}{d x} \ln (f(x))=\frac{1}{4 \sqrt{x}} \ln (x)+\frac{1}{2} \cdot \sqrt{x} \cdot \frac{1}{x} \\
& f^{\prime}(x)=f(x) \frac{d}{d x} \ln (f(x))=\sqrt{x}^{\sqrt{x}}\left(\frac{1}{4 \sqrt{x}} \ln (x)+\frac{1}{2} \cdot \sqrt{x} \cdot \frac{1}{x}\right)
\end{aligned}
$$

2. (25 points) Find the equations of the tangent and normal lines to the following curve at the given point.

$$
x^{2}+4 x y=13-y^{2}, \quad(2,1)
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+4 x y\right)=\frac{d}{d x}\left(13-y^{2}\right) \\
\Rightarrow & 2 x+\frac{d}{d x}(4 x y)=\frac{d}{d x}\left(-y^{2}\right) \\
\Rightarrow & 2 x+4 y+4 x \frac{d y}{d x}=-2 y \frac{d y}{d x} \\
\Rightarrow & \frac{d y}{d x}=\frac{-2 x-4 y}{4 x+2 y} \\
& \frac{d y}{d x} \left\lvert\, \begin{array}{l}
x=2 \\
y=1
\end{array}\right.
\end{aligned}
$$

\Rightarrow Tangent at $(2,1)$ has equation $y-1=\frac{-8}{10}(x-2)$
Normal at $(2,1)$ has equation $y-1=\frac{10}{8}(x-2)$
3. (25 points) Show that the following equation has at most 2 real solutions. Be sure to carefully justify you answer clearly stating any results you use from lectures.

$$
3 x^{6}+4 x^{2}+c=0, \quad \text { where } c \text { is any constant }
$$

Solution:
Assume $f(x)=3 x^{6}+4 x^{2}+c$ has 3 real roots $a<b<c$

$$
\Rightarrow \quad f(a)=f(b)=f(c)
$$

M.V.T. \Rightarrow There exists $a<d<b$ such that $7^{\prime}(d)=\frac{f(b)-f(a)}{b-a}=0$ There exists $b<e<c$ such that $7^{\prime}(c)=\frac{f(c)-7(b)}{c-b}=0$
M.V.T. \Rightarrow There exists $d<g<e$ such that $7^{\prime \prime}(g)=\frac{7^{\prime}(e)-7^{\prime}(d)}{e-a}=0$

Condusion :
$f(x)=0$ has 3 real solutions $\Rightarrow 7^{\prime \prime}(x)=0$ has at least our real solution.

$$
\begin{aligned}
& f^{\prime}(x)=18 x^{5}+8 x \Rightarrow f^{\prime \prime}(x)=9 x^{4}+8 \\
& \Rightarrow \quad f^{\prime \prime}(x) \geqslant 8>0 \text { fan all } x .
\end{aligned}
$$

Hence $f^{\prime \prime}(x)=0$ has no real solutions, so $f(x)=0$ has at most 2 solutions.
4. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{3}}{(x+1)^{2}}
$$

Solution:

Domain : $(-\infty,-1) \cup(-1, \infty)$
Oad/Even: Neither

Vertical Asymptote

$$
\lim _{x \rightarrow-1} x^{3}=-1<0
$$

$\lim (x+1)^{2}=0^{+}$

$$
\Rightarrow \lim _{x \rightarrow-1} \frac{x^{3}}{(x+1)^{2}}=-\infty
$$

$$
x \rightarrow-1
$$

$\Rightarrow x=-1$ vertical asymptote

Behavior at $\pm \infty$

$$
\lim _{x \rightarrow \pm \infty} \frac{7(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x^{3}}{x^{3}+2 x^{2}+x}=1
$$

$$
\lim _{x \rightarrow \pm \infty} f(x)-x=\lim _{x \rightarrow \pm \infty} \frac{x^{3}}{(x+1)^{2}}-\frac{x(x+1)^{2}}{(x+1)^{2}}=\lim _{x \rightarrow \pm \infty} \frac{-2 x^{2}-x}{x^{2}+2 x+1}=-2
$$

$\Rightarrow y=x-2 \quad$ slant asymptote.

$$
\left.\begin{array}{rl}
f^{\prime}(x) & =\frac{3 x^{2}(x+1)^{2}-2(x+1) x^{3}}{(x+1)^{4}}=\frac{3 x^{2}(x+1)-2 x^{3}}{(x+1)^{3}} \\
& =\frac{x^{3}+3 x^{2}}{(x+1)^{3}}=\frac{x^{2}(x+3)}{(x+1)^{3}} \\
A / f^{\prime}(x)=0 \Leftrightarrow x
\end{array}\right] \quad \text { Cocalmax }
$$

Solution (continued) :

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(3 x^{2}+(x)(x+1)^{3}-3(x+1)^{2}\left(x^{3}+3 x^{2}\right)\right.}{(x+1)^{6}} \\
& =\frac{\left(3 x^{2}+6 x\right)(x+1)-3\left(x^{3}+3 x^{2}\right)}{(x+1)^{4}}=\frac{6 x}{(x+1)^{4}}
\end{aligned}
$$

A/ $f^{\prime \prime}(x)=0 \Leftrightarrow x=0$
B/ $7^{\prime \prime}$ discoutinenos at $x=-1$
Futledtron

$$
f(0)=0, f(-3)=\frac{-27}{4}
$$

5. (25 points) Find the point on the curve $y^{2}+9 x^{2}=36$ which is closest to (1,0). Hint: When minimizing the objective function make sure you think carefully about the domain. Solution:

$$
Q=\sqrt{(x-1)^{2}+y^{2}}
$$

Constraint :

$$
\begin{aligned}
y^{2}+4 x^{2}=36 \Rightarrow y^{2} & =36-9 x^{2} \\
& =9\left(4-x^{2}\right) \\
\Rightarrow-2 & \leq x \leq 2
\end{aligned}
$$

and $Q=\sqrt{(x-1)^{2}+36-4 x^{2}}=7(x)$

$$
f^{\prime}(x)=\frac{2(x-1)-18 x}{2 \sqrt{(x-1)^{2}+36-4 x^{2}}}=\frac{-16 x-2}{2 \sqrt{(x-1)^{2}+36-4 x^{2}}}
$$

A/ $f^{\prime}(x)=0 \Leftrightarrow x=\frac{-1}{8}$
Denominator is
B, f^{\prime} continuator on $[-2,2]$. non-2000 on $[-2,2]$

$$
f^{\prime}(-1)>0 \quad f^{\prime}(0)<0
$$

\Rightarrow Absolute min is at -2 en 2
$f(2)=1$
$f(-2)=3$$\quad \Rightarrow \quad(2,0)$ is closest point

