MATH 1A MIDTERM 2 (PRACTICE 1) PROFESSOR PAULIN

\qquad

Student ID: \qquad
\qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the derivatives of the following functions (you do not need to use the limit definition):
(a) (10 points)

$$
e^{\frac{\arccos (x)}{x}}
$$

Solution:

(b) (15 points)

$$
\sqrt{x}^{\sqrt{x}}
$$

Solution:

2. (25 points) Find the equations of the tangent and normal lines to the following curve at the given point.

$$
\begin{equation*}
x^{2}+4 x y=13-y^{2}, \tag{2,1}
\end{equation*}
$$

Solution:
3. (25 points) Show that the following equation has at most 2 real solutions. Be sure to carefully justify you answer clearly stating any results you use from lectures.

$$
3 x^{6}+4 x^{2}+c=0, \quad \text { where } c \text { is any constant }
$$

Solution:

4. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{3}}{(x+1)^{2}}
$$

Solution:

Solution (continued) :
5. (25 points) Find the point on the curve $y^{2}+9 x^{2}=36$ which is closest to $(1,0)$. Hint: When minimizing the objective function make sure you think carefully about the domain. Solution:

