MATH 1A MIDTERM 2 (002) PROFESSOR PAULIN

\qquad

Student ID: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the derivatives of the following functions (you do not need to use the limit definition and you do not need to simplify your answer):
(a) (10 points)

$$
\frac{\arctan \left(x^{2}\right)}{x}
$$

Solution:

$$
\begin{array}{r}
\frac{d}{d x}\left(\frac{\arctan \left(x^{2}\right)}{x}\right)=\frac{\frac{d}{d x}\left(\cos \tan \left(x^{2}\right)\right) x-\cos \tan \left(x^{2}\right) \cdot \frac{d}{d x}(x)}{x^{2}} \\
=\frac{1+\left(x^{2}\right)^{2} \cdot 2 x^{2}-\cos \tan \left(x^{2}\right)}{x^{2}}
\end{array}
$$

(b) (15 points)

Solution:

$$
\begin{aligned}
& f(x)=(\sin (x))^{\cos (x) \Rightarrow} \Rightarrow \frac{d}{d x} \ln (7(x))=\frac{d}{d x}(\cos (x) \ln (\sin (x)) \\
&=-\sin (x) \ln (\sin (x))+\cos (x) \frac{\cos (x)}{\sin (x)} \\
& \Rightarrow \frac{d}{d x}\left(\sin (x)^{\cos (x)}\right)=\sin (x)^{\cos (x)}\left(-\sin (x) \ln (\sin (x))+\cos (x) \frac{\cos (x)}{\sin (x)}\right)
\end{aligned}
$$

2. (25 points) A warm object is placed in a cool room. The room's temperature is $10^{\circ} \mathrm{C}$. At 2 pm the object has temperature $30^{\circ} \mathrm{C}$. At 3 pm the temperature is $15^{\circ} \mathrm{C}$. At what time was the temperature of the object $50^{\circ} \mathrm{C}$? Solution:

$$
\begin{aligned}
& T(t)=T_{s}+C e^{k t /} \quad \begin{array}{l}
\text { in hows } \\
2 p m: t=0
\end{array} \\
& \left.\begin{array}{l}
T_{s}=10 \\
T(c)=30 \\
T(1)=15
\end{array}\right\} \Rightarrow \begin{array}{l}
10+c=30 \\
10+c e^{k}=15
\end{array} \Rightarrow \begin{array}{l}
c=20 \\
e^{k}=\frac{s}{20}
\end{array} \Rightarrow k=\ln \left(\frac{1}{4}\right) \\
& \Rightarrow T(t)=10+20 e^{\ln \left(\frac{1}{4}\right) t}=10+20 \cdot\left(\frac{1}{4}\right)^{t} \\
& T(t)=50 \Rightarrow 10+20\left(\frac{1}{4}\right)^{t}=50 \Rightarrow\left(\frac{1}{4}\right)^{t}=2 \\
& \Rightarrow \text { Tempouatione war } 50^{\circ} \mathrm{C} \text { at } 1.30 \mathrm{pm} \text {. }
\end{aligned}
$$

3. (25 points) Let f be a function which is differentiable on \mathbb{R}. Assume that

$$
2<f^{\prime}(x)<5 \text { for all } x \text { in } \mathbb{R}
$$

If $f(4)=2$, what are the possible values of $f(1)$?
Solution:

$$
\begin{aligned}
& \text { M.V.T. } \Rightarrow \frac{7(4)-7(1)}{4-1}=7^{\prime}(c) \quad 7 \mathrm{~m} \text { some } \\
& 2<f^{\prime}(c)<5(1,4) \\
& \Rightarrow \quad 2<\frac{2-7(1)}{3}<5 \\
& \Rightarrow \quad 6<2-7(1)<7(1)<15 \\
& \Rightarrow \quad 4<-7(1)<13 \\
& \Rightarrow \quad 7(1) \text { can tale any value in }(-13,-4)
\end{aligned}
$$

4. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{-x^{2}+5 x-7}{x-2}=f(x)
$$

Solution:
Domain: $\quad(-\infty, z) \cup(2, \infty)$
Oad/Even: Neitlan
Vertical Asymptotes

Behoulian at $\pm \propto$

$$
\lim _{x \rightarrow \pm \infty} \frac{7(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{-x^{2}+5 x-7}{x^{2}-2 x}=\frac{-1}{1}=-1 "^{m}
$$

$$
f(x)=\frac{-x^{2}+5 x-x}{x-2}
$$

A/ Niue $\left(-x^{2}+5 x-7 \neq 0\right)$
B/ $x=2$

$$
\begin{aligned}
f^{\prime}(x)=\frac{(-2 x+5)(x-2)-\left(-x^{2}+5 x-7\right)}{(x-2)^{2}} & =\frac{-x^{2}+4 x-3}{(x-2)^{2}} \\
& =\frac{-(x-3)(x-1)}{(x-2)^{2}}
\end{aligned}
$$

$$
q^{\prime \prime}=\frac{(-2 x+4)(x-2)^{2}-\left(-x^{2}+4 x-3\right) \cdot 2(x-2)}{(x-2)^{4}}
$$

5. (25 points) A company needs to design an open topped box with a square base. The box must have volume $32 \mathrm{in}^{3}$. If materials cost three dollars per square inch, what is the minimum possible cost of a single box?
Solution:

Objective : Mlaiarize Cost

Objective quantity: $3\left(4 x y+x^{2}\right)$
Constraint : $y x^{2}=32 \quad(x>0)$

$$
\Rightarrow y=\frac{32}{x^{2}} \Rightarrow 3\left(4 x y+x^{2}\right)=3\left(\frac{128}{x}+x^{2}\right)=7(x)
$$

Domain : $(0, \infty)$

$$
f^{\prime}(x)=3\left(\frac{-128}{x^{2}}+2 x\right)
$$

A/ $\frac{-128}{x^{2}}+2 x=0 \Leftrightarrow x^{3}=64 \Leftrightarrow x=4$ 7 cts at $4 \Rightarrow$ Abs min.
B/ None in $(0, \infty)$

$$
\Rightarrow \text { Min cost }=7(4)=3\left(\frac{128}{4}+4^{2}\right)=\$ 144
$$

