MATH 1A MIDTERM 2 (001)

 PROFESSOR PAULIN
\qquad
\qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Calculate the following:
(a) (10 points)

$$
\frac{d}{d x}\left(\frac{x^{2}-1}{2^{x}}\right)
$$

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}-1}{2^{x}}\right) & =\frac{\frac{d}{d x}\left(x^{2}-1\right) \cdot 2^{x}-\left(x^{2}-1\right) \frac{d}{d x}\left(2^{x}\right)}{\left(2^{x}\right)^{2}} \\
& =\frac{2 x \cdot 2^{x}-\left(x^{2}-1\right) \ln (2) \cdot 2^{x}}{\left(2^{x}\right)^{2}}
\end{aligned}
$$

(b) (15 points)

$$
\lim _{x \rightarrow 0^{+}}(2 x)^{x}
$$

Solution:

$$
\begin{aligned}
& \ln \left(\lim _{x \rightarrow 0^{+}}(2 x)^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (2 x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (2 x)}{1 / x} \\
&=\lim _{x \rightarrow 0^{+}} \frac{\frac{2}{2 x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0 \\
& \text { L'Hospitel }^{\prime} \\
& \Rightarrow \lim _{x \rightarrow 0^{+}}(2 x)^{x}=e^{0}=1
\end{aligned}
$$

2. (25 points) Between November 13th 2019 and November 13th 2022, a radioactive matrial will lose 40% of its mass. Over what length of time will the material lose 80% of its mass? You do not need to simplify your answer.

Solution:

$M(3)=0.6 M(0)$
$\Rightarrow C e^{3 k}=0.6 c \Rightarrow e^{3 k}=0.6$

$$
\begin{aligned}
M(t)=0.2 M(0) & \Rightarrow \quad C e^{\frac{\ln (0.6)}{3} t}=0.2 c \\
& \Rightarrow \quad \frac{\ln (0.6)}{3} t=\ln (0.2) \\
& \Rightarrow \quad t=\frac{3 \ln (0.2)}{\ln (0.6)}
\end{aligned}
$$

3. (25 points) Let f be a function which is differentiable on \mathbb{R}. Assume that

$$
\left|f^{\prime}(x)\right|<2 \text { for all } x \text { in } \mathbb{R}
$$

If $f(1)=2$, what are the possible values of $f(3)$?
Solution:

$$
\begin{aligned}
& \text { M.V.T. } \Rightarrow \frac{f(3)-f(1)}{3-1}=\begin{array}{c}
f^{\prime}(c) \\
c \text { in }(1,3)
\end{array} \\
& \left|f^{\prime}(c)\right|<2 \Rightarrow\left|\frac{f(3)-f(1)}{3-1}\right|<2 \\
& \Rightarrow-2<\frac{f(3)-2}{2}<2 \\
& \Rightarrow-2<f(3)<6 \\
& \text { Condusion }: 7(3) \text { can take any value in } \\
& (-2,6)
\end{aligned}
$$

4. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{2}+3 x+3}{x+1}=\boldsymbol{f}(x)
$$

Solution:
Domain : $(-\infty,-1) \cup(-1, \infty)$
Odd/Even : Neither

$$
\begin{aligned}
& \text { Veurcal Asymptotes } \\
& \lim _{x \rightarrow-1^{+}+x^{2}+3 x+3}=1>0 \\
& \lim _{x \rightarrow-1^{+}} x+1=0^{+}, \lim _{x \rightarrow-1^{-}} x+1=0
\end{aligned}\left\{\begin{array}{l}
\lim _{x \rightarrow-1^{+}} 7(x)=\infty \\
\lim _{x \rightarrow-1^{-}} f(x)=-\infty
\end{array}\right.
$$

Behavior at $\pm \infty$:

Solution (continued) :

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(2 x+3)(x+1)-\left(x^{2}+3 x+3\right)}{(x+1)^{2}} \\
&=\frac{x^{2}+2 x}{(x+1)^{2}} \\
& A / x^{2}+2 x=0 \Leftrightarrow x=0,-2+7^{\prime} \\
& B / x=-1 \\
& f^{\prime \prime}(x)=\frac{(2 x+2)(x+1)^{2}-\left(x^{2}+2 x\right) \cdot 2(x+1)}{(x+1)^{4}} \\
&=\frac{(2 x+2)(x+1)-2\left(x^{2}+2 x\right)}{(x+1)^{3}+4}=\frac{2}{(x+1)^{3}} \\
& \text { A/ Nocalmax } \\
& \text { B/ } x=-1
\end{aligned}
$$

$$
f(0)=3
$$

$$
f(-2)=-1
$$

5. (25 points) A company plans to package its product in a cylinder that is open at one end. The cylinder must have volume $27 \pi \mathrm{~cm}^{3}$. If materials cost 2 dollars per square centimeter, what is the minimum possible cost of producing a single cylinder? You do not need to simplify your answer.
Solution:
Objective: Minimize cot

Objective: $2\left(\pi r^{2}+2 \pi r h\right)$
Constraint: Volume $=27 \pi$

$$
\Rightarrow \pi r^{2} h=27 \pi
$$

$$
\Rightarrow h=\frac{27}{r^{2}} \Rightarrow 2\left(\pi r^{2}+2 \pi r h\right)=2\left(\pi r^{2}+\frac{54 \pi}{r}\right)=f(r)
$$

Domain : $r \neq 0, r \geqslant 0=(0, \infty)$

$$
f^{\prime}(r)=2\left(2 \pi r-\frac{54 \pi}{r^{2}}\right)
$$

A/ $f^{\prime}(r)=0 \Rightarrow r^{3}=27 \Rightarrow r=3$
B/ 7^{\prime} contmíons an $(0, \infty)$

$\Rightarrow f(3)$ absolute min on $(0, \infty)$

$$
\Rightarrow \text { Min cost }=\$ 2\left(\pi \cdot 3^{2}+\frac{54 \pi}{3}\right)=\$ 54 \pi
$$

