MATH 1A MIDTERM 2 (001) PROFESSOR PAULIN

Name: _____

2

Student ID: _____

GSI's name:

Math 1A

Midterm 2(001)

This exam consists of 5 questions. Answer the questions in the spaces provided.

- 1. Calculate the following:
 - (a) (10 points)

$$\frac{d}{dx}(\frac{x^2-1}{2^x})$$

Solution:

$$\frac{d}{dx}\left(\frac{x^{2}-1}{z^{x}}\right) = \frac{\frac{d}{dx}(x^{2}-1)\cdot z^{x}-(x^{2}-1)\frac{d}{dx}(z^{n})}{(z^{n})^{2}}$$
$$= \frac{2x\cdot z^{n}-(x^{2}-1)(x^{2}-1)(x^{2}-1)}{(z^{n})^{2}}$$

(b) (15 points)

$$\lim_{x \to 0^+} (2x)^x$$

Solution:

$$L_{n}\left(Lim (2\pi)^{X}\right) = Lim \times Lu(2\pi) = Lim \frac{Lu(2\pi)}{\pi - 30^{+}}$$

$$= Lim \frac{2}{\pi - 30^{+}} = Lim -\pi = 0$$

$$\pi - 30^{+} \frac{-1}{\pi^{2}} = Lim -\pi = 0$$

$$\pi - 30^{+} \frac{-1}{\pi^{2}} = \pi - 30^{+}$$

2. (25 points) Between November 13th 2019 and November 13th 2022, a radioactive material will lose 40% of its mass. Over what length of time will the material lose 80% of its mass? You do not need to simplify your answer.
Solution:

E E $M(t) = Co^{kt}$ at fime Mass M(3) = 0.6 M(0)Ce^{3k} = 0.6 C >) 0.6 =) =\ 1010.61 k 3 (n10.6) t 0.20 $M(t) = 0 \cdot 2 M(0)$ Le 3) 1n(0.6) 1n(0·2) (ح $t = \frac{3\ln(0\cdot 2)}{\ln(0\cdot 6)}$ =)

3. (25 points) Let f be a function which is differentiable on \mathbb{R} . Assume that

|f'(x)| < 2 for all x in \mathbb{R}

If f(1) = 2, what are the possible values of f(3)? Solution:

4. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$y = \frac{x^2 + 3x + 3}{x + 1}$$
 = 4(x)

Solution:

Domain : (- ~,-1) u (-1,~)

Odd/Even : Neitle

Ventral Asymptotes

 $\begin{array}{cccc} Lim & z^{2}+3z+3 &= 1 > 0 \\ z \rightarrow -1^{+/-} \\ Lim & z+1 &= 0^{+}, \ Lim & z+1 &= 0^{-} \\ \end{array} \begin{array}{cccc} Lim & f(z) &= \infty \\ z \rightarrow -1^{+} \\ Lim & z+1 &= 0^{-}, \\ z \rightarrow -1^{-} \\ z \rightarrow -1^{-} \end{array}$

$$x \to -1^+$$
 $x + 1 = 0^+$, $G_{m} = x + 1 = 0$ $x \to -1^-$
 $x \to -1^+$ $x \to -1^-$

$$\begin{array}{rcl} Lim & \mp(x) - x &= & Lim & \mp(+3x+3) - x^{2} - \pi \\ x - 3 \pm n & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & &$$

PLEASE TURN OVER

Solution (continued) :

PLEASE TURN OVER

5. (25 points) A company plans to package its product in a cylinder that is open at one end. The cylinder must have volume 27π cm³. If materials cost 2 dollars per square centimeter, what is the minimum possible cost of producing a single cylinder? You do not need to simplify your answer.

Solution:

cot Objective • Minimize

٥ هخ	otree: 2	(Tr2+ 27rb	\sim
h Con	shait :	Volume = 2	$\neq \pi$
	-)	πr ² h = 27	π
$\Rightarrow h = \frac{27}{r} \Rightarrow 2$	(TTr2 +21	$(rh) = 2(\pi r^2 +$	$\frac{S4\pi}{r} = f(r)$
Domain : rto, rz	0 -	(o,~)	
$f(r) = 2(2\pi r - \frac{54}{r})$	")		
$A_{/} + (n) = 0 = 0 = 0$	³ = 27	> r=z	
By 7' continuous on 1 0 3	(0, -0) 	- +	7'(~)
\$'(1) < 0	7'(4)	>0	_

(0, ~) *pu*

f(3) absolute min Min cost = 15 $(\pi \cdot 3^2 + \frac{54\pi}{3}) = 54\pi$

•