Midtenar I Review
Cove Functions:
Polynomials. Rational Functions, Power Functions,
Trigonometric Functions, Inverse Trigonometric Functions, Exponential Functions, Logonithomic Functions.

Domains
Renter Definitions and basic properties

Domain of $f=x$ in \mathbb{R} such that $f(x)$ is defined.
Things to look out for:

- Denominators being 0
- Appropriate domains of cove functions. For example aresin, orcas have domain $[-1,1]$, Un has domain $(0, \infty)$ integer \tan has domain $x \neq \frac{\pi}{2}+u \pi$ $\sqrt[n]{ }$ Gov n even has domain $[0, \infty)$
- For compositions consider range of internal functions.
For example, $\sqrt{\arcsin (x)}$

$$
\arcsin (x) \geqslant 0 \Longleftrightarrow 0 \leq x \leq 1
$$

\Rightarrow Domain of $\sqrt{\arcsin (x)}=[0,1]$

Transformations of functions
$a>0$
$f(x) \rightarrow f(x)+a=$ Translation up by a
$f(x) \rightarrow f(x)-a=$ Translation down by a
$f(x) \rightarrow f(x+a)=$ Translation left by a
$f(x) \rightarrow f(x-a)=$ Translation right by a
$6>1$
$f(x) \rightarrow b f(x)=$ Vertical stretch by b
$f(x) \rightarrow \frac{1}{b} f(x)=$ Vertical compression by b
$f(x) \rightarrow f(b x)=$ Horizontal compression by b
$f(x) \rightarrow f\left(\frac{1}{6} x\right)=$ Horizontal stretch by b
$f(x) \rightarrow-f(x)=$ Reflection in x-axis
$f(x) \rightarrow f(-x)=$ Reflection in y-axis
Safe Order \leftarrow Usually easiest to get correct.

Limits
Intuitive $f(x)$ approaches L as x approaches (but does not equal) a from both sides.
$\operatorname{Lim} f(x)=L$

$$
x \rightarrow a
$$

Given any horizontal strip (entered at L, there exists (c) a vertical strip (centered at a) such that
$(x, f(x))$ in $^{3} \Rightarrow(x, f(x))$
vertical strip, \Rightarrow in horizontal $x \neq a$

Vertical strip nohow enough $0<|x-a|<\delta$ graph into $\quad \Rightarrow \quad|f(x)-<|<\varepsilon$ \Leftrightarrow there exists ss, such that

$$
\begin{align*}
& 0<|x-a|<\delta \\
& \Rightarrow|f(x)-L|<\varepsilon \tag{4}
\end{align*}
$$

There arts $\delta>0$ intersection
Using (ε, δ)-definition to prove $\operatorname{Lim} f(x)=L$

$$
x \rightarrow a
$$

1 Fix $\varepsilon>0$
2/ Draw Graph as above and make sensible choice $07 \delta>0$.i.e. Make vertical strip süticceítly know
3 Verity $0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$

Example $f(x)= \begin{cases}2 x+1 & x \leqslant 2 \\ 3 x-1 & x>2\end{cases}$
Prove $\quad \lim _{x \rightarrow 2} f(x)=5$
$1 /$ Fix $\Sigma>0$

$2 x+1=5-\varepsilon \quad \Rightarrow x=2+\frac{\varepsilon}{3}, ~$
$\Rightarrow x=2-\frac{\varepsilon}{2}$
\Rightarrow Choose $\delta=\frac{\Sigma}{3}$

$$
x>2
$$

$$
0<|x-2|<\frac{\varepsilon}{3}
$$

$$
\begin{aligned}
3|x-2|<\varepsilon & \Rightarrow|3 x-6|<\varepsilon \\
& \Rightarrow|(3 x-1)-5|<\varepsilon \\
x<2|x-2|<\frac{2 \varepsilon}{3} & \Rightarrow|2 x-4|<\frac{2 \varepsilon}{3} \\
& \Rightarrow|(2 x+1)-5|<\frac{2 \varepsilon}{3}<\varepsilon
\end{aligned}
$$

Remowh : Trying to algebraically reverse engineer an appropriate $S>0$ stanting from $|f(x)-L|<\varepsilon$ will be ven y hand in this case.

Using (ε, δ)-definition to prove $\quad \lim _{x \rightarrow a} f(x) \neq L$

1/ Draw a picture and choose $\Sigma>0$ small enough to divide $y=f(x)$ into two disjoint pieces near $x=a$

2 For this Σ, Prove that for any $\delta>0$

$$
0<|x-a|<\delta \not \equiv \quad|f(x)-L|<\varepsilon
$$

Example $f(x)=\left\{\begin{array}{cc}-1 & \text { it } x<1 \\ 1 & \text { it } x \geqslant 1\end{array}\right.$
Prove $\lim _{x \rightarrow 1} f(x) \neq 1$
1

$3 / 2$			
1			
$1 / 2$			
	$1-\delta$	1	$1+\delta$
		0	

$$
\Rightarrow \text { Choose } \varepsilon=\frac{1}{2}
$$

Now in intersection
2/ Let $\delta>0$ and choose x such that

$$
1-8<x<1
$$

$\Rightarrow 0<|x-1|<\delta$ and $|f(x)-1|=|-1-1|=2 \notin \frac{1}{2}$
\Rightarrow No possible choice of $\delta>0$ for $\varepsilon=\frac{1}{2}$

Important variants of $\lim _{x \rightarrow a} f(x)=L$:

Important Definition:
7 counting urns at $x=a$ if
1/ $7(a)$ defined
2/ $\lim _{x \rightarrow a} f(x)$ exists
3/ $\lim _{x \rightarrow a} f(x)=f(a)$
Variants: $\lim _{x \rightarrow a^{+}} f(x)=7(a), \lim _{x \rightarrow a^{-}} f(x)=f(a)$
Coutininous from above continuous from below
f is continuous if it is continons erongwhere in its domain (above /below at end points)
Key Facts
1/ All cove functions are continuous
2 Sums, ditievences, products, quotients, compositions are continuous.

Limit Lavs $\left(?=a / a^{+} / a^{-} / \infty,-\infty\right)$
$\lim _{x \rightarrow ?} f(x)=L \quad$ and $\quad \lim _{x \rightarrow ?} g(x)=k \quad \Rightarrow$

- $\operatorname{Lim}_{x \rightarrow \text { ? }} f(x)+g(x)=L+K$
- $\lim _{x \rightarrow ?} f(x) g(x)=L K$
- $K \neq 0 \Rightarrow \lim _{x \rightarrow ?} \frac{f(x)}{g(x)}=\frac{L}{K}$

Composite Law:
$\lim _{x \rightarrow ?} g(x)=b, \lim _{x \rightarrow b} f(x)=c \Rightarrow \lim _{x \rightarrow ?} f(g(x))=c$
Infinite Limits
$\lim _{x \rightarrow 2} f(x)=\infty \quad \not \quad f(x)$ instead grows $x \rightarrow$? positively without bound
($a / a^{+} / a^{-}$gives vertical asymptote)
$\lim _{x \rightarrow 2} f(x)=-\infty \quad \Leftrightarrow \quad f(x)$ instead grows $x \rightarrow$? negatively without bound

Warning: In both case limit DNE.

Basic laws of Infinite limits $\quad\left(?=a / a^{+} / a^{-} / \infty /-\infty\right)$
A/ $\lim _{x \rightarrow \text { ? }} f(x)=\infty \Rightarrow \lim _{x \rightarrow ?}-f(x)=-\infty$
$B \lim _{x \rightarrow \text { ? }} f(x)=0^{ \pm} \Leftrightarrow \lim _{x \rightarrow \text { ? }} \frac{1}{f(x)}= \pm \infty$
c $\lim _{x \rightarrow ?} f(x)=L \lim _{x \rightarrow ?} g(x)= \pm \infty \Rightarrow \lim _{x \rightarrow ?} f(x)+g(x)= \pm \infty$
D $\lim _{x \rightarrow ?} f(x)=\infty, \lim _{x \rightarrow \text { ? }} g(x)=\infty \Rightarrow \lim _{x \rightarrow \text { ? }} f(x)+g(x)=\infty$
E. $\lim _{x \rightarrow ?} f(x)=C>0, \lim _{x \rightarrow ?} g(x)= \pm \infty \Rightarrow \lim _{x \rightarrow ?} f(x) g(x)= \pm \infty$
F. $\lim _{x \rightarrow ?} f(x)=\infty, \lim _{x \rightarrow \text { ? }} g(x)= \pm \infty \Rightarrow \lim _{x \rightarrow \text { ? }} f(x) g(x)= \pm \infty$
a $\lim _{x \rightarrow ?} g(x)= \pm \infty \Rightarrow \lim _{x \rightarrow \text { ? }} 7(g(x))=\lim _{u \rightarrow \pm \infty} 7(u)$
$\frac{\text { Important Case : Quotients }}{\lim _{x \rightarrow \text { ? }} \frac{f(x)}{g(x)}=\text { ??? }}$

Calculate $\lim _{x \rightarrow \text { ? }} f(x)=L$ and $\lim _{x \rightarrow ?} g(x)=K$

$$
\begin{gathered}
K \neq 0 \\
\downarrow
\end{gathered}
$$

$$
L \neq 0
$$

$$
K=0
$$

Quotient Lan
\downarrow
$\operatorname{Lim}_{x \rightarrow ?} \frac{f(x)}{g(x)}$ ONE
\rightarrow

$$
c=0
$$

$$
k=0
$$

Manipulate and apply $\mathcal{C O} \times 2$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{\prime}} g(x)=0^{+} \Leftrightarrow \\
& \lim _{x \rightarrow a^{+}} g(x)=0^{+} \Leftrightarrow \\
& \lim _{x \rightarrow a^{-}} g(x)=0^{+} \Leftrightarrow \\
& \lim _{x \rightarrow \infty^{+}} g(x)=0^{+} \Leftrightarrow \\
& \lim _{x \rightarrow \infty} g(x)=0^{+} \Leftrightarrow
\end{aligned}
$$

The Derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\begin{aligned}
& \text { slope of t } \\
& \text { lin to p } \\
& (x, f(x))
\end{aligned}
$$

If it exists we say f diff erentrabl u at x

