MATH 1A MIDTERM 1 (PRACTICE 2)
 PROFESSOR PAULIN

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.	
CALCULATORS ARE NOT PERMITTED	
YOU MAY USE YOUR OWN BLANK PAPER FOR ROUGH WORK	
SO AS NOT TO DISTURB OTHERSTUDENTS, EVERYONE MUST STAY UNTIL THE EXAM IS COMPLETE	
REMEMBER THIS EXAM IS GRADED B A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT	
THIS EXAM WILL BE ELECTRONICALLY	
OOLUTIONS IN THE SPACES PROVIDED.	
BLANK PAGE AT THE BACK BUT BE SURE TO CLEARLY LABEL THEM	

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the domains of the following functions:
(a) (15 points)

$$
\ln \left(\frac{x+1}{x+4}\right)
$$

Solution:
(b) (10 points)

$$
\arcsin (3-2 x)
$$

Solution:

2. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}+k x-2}{x^{2}+2 x-3} & \text { if } x \neq 1 \\ l & \text { if } x=1\end{array}\right.$ for some real number k and l.

Determine what values of k and l make $f(x)$ continuous at $x=1$? Carefully justify why $f(x)$ is continuous at $x=1$ for these values.

Solution:

3. (25 points) Calculate (using the limit laws) the following limits. If a limit does not exist determine if it is $\infty,-\infty$ or neither.
(a)

$$
\lim _{x \rightarrow 0}\left(e^{x^{2}+x}+x^{2}+1\right)
$$

Solution:

(b)

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}
$$

Solution:

(c)

$$
\lim _{x \rightarrow \infty}(\ln (3+x)-\ln (1+x))
$$

Solution:

(d)

$$
\lim _{x \rightarrow 1} 2^{\arcsin \left(\frac{x^{2}-2 x+1}{x-1}\right)}
$$

Solution:

4. (a) (20 points) Prove, using ϵ, δ methods, that

$$
\lim _{x \rightarrow 1} \frac{2 x^{2}-x-1}{x-1}=3
$$

Solution:

(b) (5 points) Is $\frac{2 x^{2}-x-1}{x-1}$ differentiable at $x=1$?

Solution:

5. (a) (15 points) Using the direct definition of the derivative, calculate the derivative of the function

$$
f(x)=x^{3 / 2}
$$

Solution:

(b) (10 points) Does there exist a tangent line to $y=x^{3 / 2}$ which contain the point $(1,0)$? Carefully justify your answer.
Solution:

