MATH 1A MIDTERM 1 (PRACTICE 1)
 PROFESSOR PAULIN

Name and section:

GSI's name: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the domains of the following functions:
(a) (10 points)

$$
\frac{\sqrt{1-x^{2}}}{\tan ^{2}(x)-1}
$$

Solution:

$$
\begin{align*}
& 1-x^{2} \geq 0 \Leftrightarrow 1 \geqslant x^{2} \Leftrightarrow 1 \leq x \leq 1, \text { is. } x \text { in }[-1,1] \\
& \tan ^{2}(x)-1=0 \Leftrightarrow \tan (x)= \pm 1 . \operatorname{In}[-1,13 \text { this } \\
& \text { only occurs at } \pm \frac{\pi}{4} \\
& \Rightarrow \quad \text { Domain }=\left[-1, \frac{-\pi}{4}\right) \cup\left(\frac{-\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, 1\right] \\
& \ln (\sin (2 x)+1) \tag{b}
\end{align*}
$$

Solution:

$$
\begin{aligned}
& \sin (2 x)+1 \geqslant 0 \text { for all } x \text { in } \mathbb{R} \\
& \sin (2 x)+1=0 \Leftrightarrow \sin (2 x)=-1 \\
& \Leftrightarrow 2 x=\frac{-\pi}{2}+2 k \pi \quad(k \text { an integer) } \\
& \Leftrightarrow x=\frac{-\pi}{4}+k \pi \Rightarrow \begin{array}{l}
\text { Domain is all } x \text { in } \mathbb{R} \text { such } \\
\text { that } x \neq \frac{-\pi}{4}+k \pi, \text { for }
\end{array}
\end{aligned}
$$

2. (a) (15 points) Describe in words, how, starting with the graph $y=f(x)$, one can draw the graph

$$
y=-3 f\left(\frac{2-x}{3}\right)+1
$$

Solution:

$$
\begin{array}{r}
f(x) \xrightarrow{\text { a) }} f\left(\frac{x}{3}\right) \xrightarrow{\text { b) }} f\left(\frac{x+2}{3}\right) \xrightarrow{c)} f\left(\frac{-x+2}{3}\right) \\
\downarrow \\
-3 f\left(\frac{2-x}{3}\right)+1 \stackrel{f}{\longleftarrow}-3 f\left(\frac{-x+2}{3}\right) \stackrel{e)}{\longleftarrow} 3 f\left(\frac{-2 c+2}{3}\right)
\end{array}
$$

a) Stretch hovizoutally by 3 f) translate up by 1
b) translate to left by 2
c) Reflect in y-axis
d) stretch vertically by 3
e) Reflect in x - $a x$ is
(b) (10 points) Give the precise value of the following:

$$
\arctan \left(\tan \left(\frac{19 \pi}{6}\right)\right) \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Solution:

$$
\begin{aligned}
& \tan \left(\frac{19 \pi}{6}\right)=\tan \left(3 \pi+\frac{\pi}{6}\right)=\tan \left(\frac{\pi}{6}\right) \\
& \Rightarrow \arctan \left(\tan \left(\frac{19 \pi}{6}\right)\right)=\arctan \left(\tan \left(\frac{\pi}{6}\right)\right)=\frac{\pi}{6}
\end{aligned}
$$

3. (25 points) Calculate (using the limit laws) the following limits. If a limit does not exist determine if it is $\infty,-\infty$ or neither.
(a)

$$
\lim _{x \rightarrow 0} \sin \left(\pi\left(x^{2}+1\right)\right)
$$

Solution:
Polynomials are continuous
$\operatorname{Lim} \pi\left(x^{2}+1\right)=\pi\left(0^{2}+1\right)=\pi$
$x \rightarrow 0$
$\sin (x)$ continuous at $x=\pi$

$$
\Rightarrow \lim _{x \rightarrow 0} \sin \left(\pi\left(x^{2}+1\right)\right)=\sin (\pi)=0
$$

(b)

$$
\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+4 x+4}
$$

Solution:

$$
\begin{aligned}
& x^{2}-x-6 \\
& \lim _{x \rightarrow-2} x-3=\frac{(x+2)(x-3)}{(x+2)(x+2)}=\frac{(x-3)}{x+2} \\
& \lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+4 x+4} \text { ONE }
\end{aligned}
$$

$$
\lim _{x \rightarrow-2} x+2=-2+2=0
$$

(c)

$$
\lim _{x \rightarrow 1} \arccos \left(\frac{1-\sqrt{x}}{1-x}\right)
$$

Solution:

$$
x \neq 1
$$

$$
\frac{1-\sqrt{x}}{1-x}=\frac{(1-\sqrt{x})(1+\sqrt{x})}{(1-x)(1+\sqrt{x})}=\frac{1-x}{(1-x)(1+\sqrt{x})}=\frac{1}{1+\sqrt{x}}
$$

$$
\lim _{x \rightarrow 1} 1=1, \lim _{x \rightarrow 1} 1+\sqrt{x}=1+\sqrt{1}=2 \Rightarrow \lim _{x \rightarrow 1} \frac{1}{1+\sqrt{x}}=\frac{1}{2}
$$

$\arccos (x)$ coutininous at $x=\frac{1}{2}$

$$
\begin{array}{r}
\Rightarrow \lim _{x \rightarrow 1} \arccos \left(\frac{1-\sqrt{x}}{1-x}\right)=\arccos \left(\frac{1}{2}\right)=\frac{\frac{1}{3}}{3} \\
\lim _{x \rightarrow-\infty} \frac{2 x+7}{\sqrt{x^{2}+9}} \tag{d}
\end{array}
$$

Solution:

Let $x<0$ and divide top and bottom by $-x=\sqrt{x^{2}}$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow-\infty} \frac{2 x+7}{\sqrt{x^{2}+9}}=\lim _{x \rightarrow-\infty} \frac{-2-\frac{7}{x}}{\sqrt{1+\frac{9}{x^{2}}}} \\
& \lim _{x \rightarrow-\infty}-2-\frac{7}{x}=-2 \\
& \lim _{x \rightarrow-\infty} \sqrt{1+\frac{9}{x^{2}}}=\sqrt{1}=1
\end{aligned}
$$

4. (25 points) Prove, using ϵ, δ methods, that the following function is not continuous at $x=0$:

$$
f(x)= \begin{cases}0 & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Need to show $\lim _{x \rightarrow 0} f(x) \neq 1$
Let $\Sigma=\frac{1}{2}$. We'll show we cannot find $\delta>0$
such that $0<|x|<\delta \Rightarrow|f(x)-1|<\frac{1}{2}$

Note that $0<|x|<\delta \Rightarrow x \neq 0 \Rightarrow 7(x)=0$

$$
\Rightarrow|f(x)-1|=|0-1|=1>\frac{1}{2}
$$

Hence $\mathrm{F}_{\mathrm{n}} \varepsilon \leq \frac{1}{2}$ there is no possible $\delta>0$. $\Rightarrow \lim _{x \rightarrow 0} f(x) \neq 1 \Rightarrow f$ not coutininous at $x=0$
5. (a) (15 points) Using the direct definition of the derivative to calculate the derivative of the function

$$
f(x)=\sqrt{2-x}
$$

What is the domain of the $f^{\prime}(x)$?
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{2-(x+h)}-\sqrt{2-x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{2-(x+h)}-\sqrt{2-x})(\sqrt{2-(x+h)}+\sqrt{2-x})}{h \cdot(\sqrt{2-(x+h)}+\sqrt{2+x})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{2-(x+h)}+\sqrt{2-x})}=\frac{-1}{2 \sqrt{2-x}}
\end{aligned}
$$

Domain is all x such that $2-x>0 \Leftrightarrow 2>x$ ie. all x in $(-\infty, 2)$
(b) (10 points) Show that the line $y=\frac{-x+3}{2}$ is a tangent line to some point on the graph $y=f(x)$.
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-1}{2} \Rightarrow \frac{-1}{2 \sqrt{2-x}}=\frac{-1}{2} \Rightarrow \sqrt{2-x}=1 \Rightarrow 2-x=1 \\
& \Rightarrow x=1 \\
& f(1)=\sqrt{2-1}=1 \Rightarrow \text { Tangent Lire at } x=1 \text { is } \\
& y-1=\frac{-1}{2}(x-1) \Rightarrow y=\frac{-x+3}{2}
\end{aligned}
$$

