MATH 1A MIDTERM 1 (001)

 PROFESSOR PAULIN
\qquad

Student ID: \qquad

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. Determine the domains of the following functions:
(a) (15 points)

$$
\ln \left(\frac{1-x}{x-2}\right)
$$

Solution:

\Rightarrow Domain of $\ln \left(\frac{1-x}{x-2}\right)$ is $(1,2)$
(b) (10 points)

$$
\frac{1}{\sqrt{\arccos (x)}}
$$

Solution:

$$
\int_{-1}^{\int_{1}^{\pi} y=\arccos (x)} \arccos (x)>0 \Leftrightarrow \text { Domain of } \frac{1}{\sqrt{\operatorname{arcos}(x)}} \text { is }[-1,1)
$$

2. (a) (15 points) Describe in words, how, starting with the graph $y=2+3 f(1-x)$, one can draw the graph

$$
y=1-3 f(2 x+1)
$$

Solution:

$$
y=2+3 f(1-x) \xrightarrow{\substack{\text { Reflect in } \\ y-a x i s}} \boldsymbol{y}=2+3 f(1+x) \xrightarrow{\substack{\text { Compress } \\ \text { Qovizonfally by } \\ \text { factor }}} 2+3 f(1+2 x)
$$

(b) (10 points) Simplify the following:

$$
\arccos (\cos (4))
$$

Solution:

$$
\begin{aligned}
& \dot{\min } \downarrow[0, \pi] \\
& \Rightarrow \cos (4)=\cos (2 \pi-4) \\
& \Rightarrow \operatorname{arcos}(\cos (4))=2 \pi-4
\end{aligned}
$$

3. Calculate (using the limit laws) the following limits. If a limit does not exist determine if it is $\infty,-\infty$ or neither.
(a) (15 points)

$$
\lim _{x \rightarrow \pi / 2^{+}} \frac{x^{2}+1}{1-\sin (x)}
$$

Solution:
contiunocs

$$
\lim _{x \rightarrow \frac{\pi}{2}^{+}} x^{2}+1=\frac{\pi^{2}}{4}+1>0
$$

Crim

$$
\begin{aligned}
& x \rightarrow \frac{\pi^{2}}{}+1-\sin (x)=0^{+} \\
& \Rightarrow \lim _{x \rightarrow \frac{\pi}{2}}+\frac{x^{2}+1}{1-\sin (x)}=\infty
\end{aligned}
$$

(b) (10 points)

$$
\lim _{x \rightarrow \infty} \arcsin \left(\frac{x^{2}-2 x+1}{2 x^{2}+3 x+1}\right)
$$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-2 x+1}{2 x^{2}+3 x+1}=\frac{1}{2} \operatorname{deg}\left(x^{2}+2 x+1\right)=\operatorname{deg}\left(2 x^{2}+3 x+1\right)
$$

ancsin contrinsus at $\frac{1}{2}$

$$
\Rightarrow \lim _{x \rightarrow \infty} \arcsin \left(\frac{x^{2}-2 x+1}{2 x^{2}+3 x+1}\right)=\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

4. (25 points) Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \leq 1 \\ 3-2 x & \text { if } x>1\end{array}\right.$.

Prove, using ϵ, δ methods, that f is continuous at $x=1$.
Solution:
Claim : $\lim _{x \rightarrow 1} f(x)=f(1)=1$
Fix $\varepsilon>0$

\Rightarrow Choose $\delta=\frac{\varepsilon}{2}$

$$
\begin{aligned}
& 3-2 x=1-\varepsilon \Rightarrow x=1+\frac{\varepsilon}{2} \\
& |2 x-2| \\
& |-2 x+2| \\
& 0<|x-1|<\frac{\varepsilon}{2} \Rightarrow 2|x-1|<\varepsilon \Rightarrow|2 x-2|<\varepsilon \Rightarrow|(3-2 x)-1|<\varepsilon \\
& \uparrow x>1 \\
& 0<|x-1|<\frac{\varepsilon}{2}
\end{aligned}
$$

Hence $0<|x-1|<\frac{\varepsilon}{2} \Rightarrow|f(x)-1|<\varepsilon$

$$
\Rightarrow \lim _{x \rightarrow 1} f(x)=f(1)
$$

5. (25 points) Does there exist a tangent line to the curve

$$
y=\frac{x+2}{x+1}
$$

which contains the point $(-1,1)$? Carefully justify your answer. If you calculate a derivative do so using the limit definition. You do not need to use ϵ, δ methods.
Solution:

$$
\begin{aligned}
f(x) & =\frac{x+2}{x+1} \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{\frac{a+h+2}{a+h+1}-\frac{a+2}{a+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a+h+2)(a+1)-(a+2)(a+h+1)}{h(a+h+1)(a+1)} \\
& =\lim _{h \rightarrow 0} \frac{a x+a h+2 a+2+h+2-a r-9 h-a-2 a-2 h+2}{h(a+h+1)(a+1)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(a+h+1)(a+1)}=\frac{-1}{(a+1)^{2}}
\end{aligned}
$$

Equation of tangent at $x=a: y-\frac{a+2}{a+1}=\frac{-1}{(a+1)^{2}}(x-a)$
$(-1,1)$ on tangent $\Rightarrow 1-\frac{a+2}{a+1}=\frac{-1}{(a+1)^{2}}(-1-a)$

$$
\Leftrightarrow \quad 1-\frac{a+2}{a+1}=\frac{1}{a+1} \Rightarrow a+1-(a+2)=1 \Rightarrow-1=1
$$

Hence n_{0} tangent contains $(-1,1)$. mst tare

