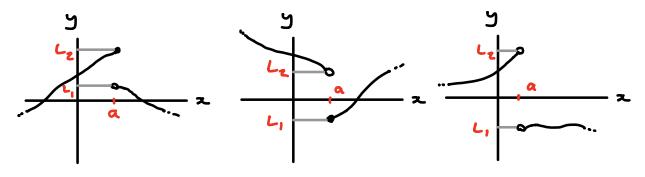
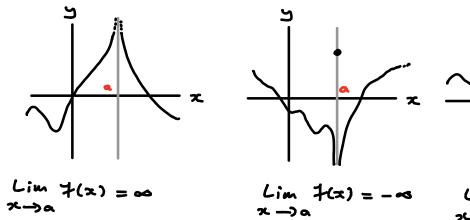

Limits of Functions


Limits are about understanding +(x) as x approaches a specific value. 4(x) = Function defined near x = a, except possibly not at x=a. Examples f(x) = x, a = 2; $f(x) = \frac{1}{2}$, a = 0; $F(x) = \frac{x^2 - 1}{x - 1}, a = 1$ Intuitive Detrinctions approaches $\lim f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to a$ Cimit ≈->a (=) F(x) approaches Las 2 approaches (but does not equal) a approaches From above $\lim_{x \to \infty} f(x) = \bigcup_{x \to \infty} f(x) \to \bigcup_{x \to \infty} f(x) \to \bigcup_{x \to \infty} f(x)$ x -> a^t (=) F(x) approaches Las x approaches (but does not equal) a trom above $Lim \neq (x) = L \quad or \quad \neq (x) \rightarrow L \quad as \quad x \rightarrow a^{-1} \quad from \quad below$ ~ -> a⁻ (=) 7(x) approaches Las & approaches (but does not equal) a trom below

<u>Remarks</u> 1/ Limits don't care about 7(a). 3/ IF there is no such L we say "the limit does not crist". DNE

Basic Graphs Lim 7(x) = L x -> a

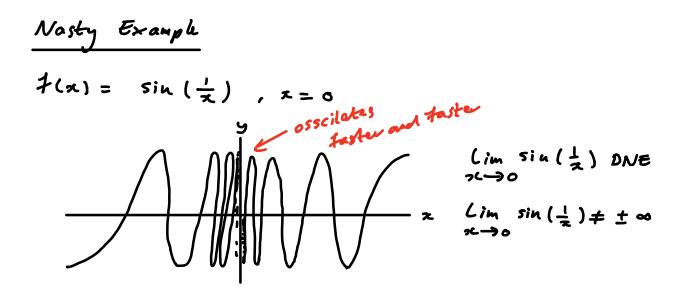

 $\lim_{x \to a^+} \frac{f(x) = L_1}{x \to a} + (x) = L_2, \quad \lim_{x \to a^-} \frac{f(x)}{x \to a} \quad DN \in \mathbb{R}$

 $\frac{A |gebraic Example}{f(x) = \frac{x^2 - 1}{x - 1}}, a = 1$ $x \neq 1 = \frac{1}{x} + \frac{(x + 1)(x - 1)}{(x - 1)} = x + 1$ $x = 1 = \frac{1}{x} - \frac{1}{x} + \frac{1}$

=)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

 $x \to 1 \quad x - 1$
Remark $\lim_{x \to a} \frac{1}{x - 1} = 1$
Remark $\lim_{x \to a} \frac{1}{x - 1} = 1$
 $\lim_{x \to a} \frac{1}{x - 1} = 1$
 $\lim_{x \to a} \frac{1}{x - 1} = 1$

Not a number Intinute Limits Just notation $\lim f(x) = \infty \quad \text{or} \quad f(x) \to \infty \quad \text{as} \quad x \to \alpha \quad (=)$ スーラa +(x) grows positively without bound as x approaches (but does <u>not</u> equal) a $\lim_{x \to \infty} +(x) = -\infty \quad \text{or} \quad +(x) \to -\infty \quad \text{as} \quad x \to \alpha \quad (=)$ スーシュ +(x) grows negatively without bound as x approaches (but does <u>not</u> equal) a We have similar definitions for $\lim_{x\to a^+} F(x) = \infty$, $\lim_{x \to a^+} F(x) = -\infty \quad \lim_{x \to a^-} F(x) = -\infty \quad \lim_{x \to a^-} F(x) = -\infty \quad x \to a^-$ Important : In all cases the limit DNE. It just tails to exist in a specific way. By abuse of terminology we say limit is plus/minus intinity Basic Graphs



Remark

"/ It any of these occur we say x=a is a vertical asymptote.

 $\frac{E \times comples}{Lim} \qquad \frac{1}{x} = \infty , \quad \lim_{x \to 0^{-1}} \frac{1}{x} = -\infty$ $\lim_{x \to 0^{+1}} ton(x) = \infty , \quad \lim_{x \to -\pi^{+1}} ton(x) = -\infty$ $\lim_{x \to 0^{+1}} 1n(x) = -\infty , \quad \lim_{x \to 0^{-1}} \frac{1}{x^2} = \infty$

