Suppose 7 and g are differentiable and g'(x) = 0 on an open interval I containing a (except possibly at a). $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \frac{1}{2} \sqrt{\frac{1}{2}} = \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$ Not obvious

Also holds for
$$x \rightarrow a^{+}/a^{-}/\infty/-\infty$$

Conditions are mot Examples $\frac{51_{4}(x)}{2} = \lim_{x \to 0} \frac{c_{25}(x)}{1} = c_{05}(0) = 1$ Y $x \rightarrow 0$ $\frac{l_{1}(x)}{l_{1}(x)} = \lim_{x \to \infty} \frac{\left(\frac{l}{x}\right)}{2x} = \lim_{x \to \infty} \frac{l}{2x^{2}} = 0$ $\frac{3}{100} = \frac{10(3)}{(1/2)} = \frac{10(3)}{(1/2)} = \frac{10}{100} \frac{(\frac{1}{2})}{(\frac{1}{2})}$ $= \lim_{x \to 0^+} -x = 0$

More generally: Lim f(x) = 0, $\lim_{x \to ?} g(x) = \infty \Rightarrow \lim_{x \to ?} f(x)g(x) = ???$ Move generally : $f(x)g(x) = \frac{f(x)}{('q(x))} \leftarrow Apply L'Hospital$

4 Lim
$$e^{x} - x = ?$$

Lim $e^{x} = \infty$, Lim $x = \infty \Rightarrow$ Lim $e^{x} - x = ???$
Lim $e^{x} = \infty$, Lim $x = \infty \Rightarrow$ Lim $e^{x} - x = ???$
Lim $e^{x} - x =$ Lim $x (\frac{e^{x}}{x} - 1)$
Lim $e^{x} - x =$ Lim $x (\frac{e^{x}}{x} - 1)$
Lim $e^{x} = \frac{e^{x}}{x \to \infty} =$ Lim $e^{x} (\frac{e^{x}}{x} - 1) = \infty$
Lim $x = \infty$
More ganarally:
Lim $f(x) = \infty$, Lim $g(x) = \infty \Rightarrow$ Lim $f(x) - g(x) = ???$
Convert to Product $g(x) \cdot (\frac{f(x)}{g(x)} - 1)$ and calculate
Lim $\frac{f(x)}{x \to ?} \frac{f(x)}{g(x)} = 1$ apply inductive is inductive interval.
Lim $x = ?$
 $f(x - 1) = 0$ (Lim $\frac{f(x)}{g(x)} - 1$) and calculate
Lim $\frac{f(x)}{x \to ?} \frac{f(x)}{g(x)} = 1$ apply induct is inductive interval.
 $f(x - 1) \frac{f(x)}{g(x)} = 1$ apply induct product an extend.
 $f(x - 1) \frac{f(x)}{x \to ?} \frac{f(x)}{g(x)} = 1$ apply inductive product an extend.
 $f(x - 1) \frac{f(x)}{x \to 0^{+}} = ?$ (Product $x = e^{f(x)}$)
 $expensentials are etc.$
 $lim $x^{x} = lim \frac{x}{x \to 0^{+}} = x^{x}(x)$ $e^{f(x)} = e^{f(x)}$
 $f(x - 1) \frac{f(x)}{x \to 0^{+}} x^{x}(x) = 0$ \Rightarrow Lim $x^{x} = e^{e} = 1$$

More generally,

$$\lim_{x \to ?} f(x) = 0^{+}, \lim_{x \to ?} g(x) = 0$$

$$\lim_{x \to ?} f(x) = \infty, \lim_{x \to ?} g(x) = 0 \qquad \Rightarrow \qquad \lim_{x \to ?} (f(x))^{3(x)} = ???$$

$$\lim_{x \to ?} f(x) = 1, \lim_{x \to ?} g(x) = \infty$$

$$f(x) = \int_{x \to ?} (\lim_{x \to ?} g(x)) = \infty$$

$$f(x) = e^{\int_{x \to ?} (h(f(x)))} \Rightarrow \lim_{x \to ?} f(x)^{3(x)} = e^{\sum ??} \int_{x \to ?} (h(f(x)))$$

$$\lim_{x \to ?} f(x) = e^{\int_{x \to ?} (h(f(x)))} \Rightarrow \lim_{x \to ?} f(x)^{3(x)} = e^{\sum ??} \int_{x \to ?} (h(f(x)))$$

$$\lim_{x \to ?} f(x) = e^{\int_{x \to ?} (h(f(x)))} \Rightarrow \lim_{x \to ?} f(x)^{3(x)} = e^{\int_{x \to ?} (h(f(x)))}$$

$$\lim_{x \to ?} (h(f(x))) = e^{\int_{x \to ?} (h(f(x)))} = e^{\int_{x \to ?} (h(f(x)))}$$

$$\lim_{x \to ?} (h(f(x))) = e^{\int_{x \to ?} (h(f(x)))} = e^{\int_{x \to ?} (h(f(x)))}$$