Functions Calculus = Study of how different quantities vary with respect to each other. R = (-∞,∞) = real numbers e decimals Number Line - = R-2 -1 0 1 2 Otten written DCR D a subset of R Examples (0,00) = all hon-zero positive real numbers N = {1,2,3,4,... } = notural numbers Z = { ..., -1, 0, 1, 2, ... } = integers [1,2] = 2 in R such that I = 2 < 2 Endpoint Endpoint not included

Definition

A <u>Function</u> 7, with domain D, is a rule which assigns to every 2 in D <u>exactly one</u> real number, denoted 7(x). The Subset of all possible 7(2) is called the <u>range of 7</u>

Crude Visualization :

Example
Nextion in a straightline between 12 pm and 1pm

$$x = anumber of minutes of the 12 : x pm$$

 $f(x) = position at time 12 : x pm$
Domain = C_0, c_0
 $repair 1 pm$
Four Key Ways to Represent a Function :
 y Verbally \leftarrow Generally not so useful
 \equiv Numerically \leftarrow Using Table
 3 Using \leftarrow Using Table
 3 Using \leftarrow Using a proph
 y Algebraically \leftarrow $Using table
 $\frac{x + f(x)}{\frac{1}{2} + \frac{1}{2}}$
 $\frac{x}{2} + \frac{f(x)}{2} = \frac{x}{2}$
 $\frac{x}{2} + \frac{x}{2} + \frac{x}{2} + \frac{x}{2} = \frac{x}{2}$
 $\frac{x}{2} + \frac{x}{2} + \frac{x$$

