MATH 1A FINAL (PRACTICE 3) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

Student ID: \qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following. You do not need to simplify your answers.
(a) (10 points)

$$
\frac{d}{d x} \frac{\left.\ln \left(x^{2}+2\right)\right)}{\tan (x)}
$$

Solution:

(b) (15 points)

$$
\frac{d}{d x} \cos \left(x^{\left(e^{x}\right)}\right)
$$

Solution:

2. Calculate the following (you do not need to use the (ϵ, δ)-definition):
(a) (10 points)

$$
\lim _{x \rightarrow 0} \frac{\tan (2 x)}{x}
$$

Solution:

(b) (15 points)

$$
\lim _{x \rightarrow-\infty} \sqrt{\left(9 x^{2}-x\right)}+3 x
$$

Hint: Rationalize.
Solution:
3. Calculate the following (you do not need to use the Riemann sum definition):
(a) (10 points)

$$
\int x^{3} \sqrt{x^{2}+1} d x
$$

Solution:

(b) (10 points)

$$
\int_{1}^{2} \frac{e^{1 / x^{2}}}{x^{3}} d x
$$

Solution:

4. (25 points) The ration of carbon-14 to carbon-12 is an ancient wooden artifact is 60 percent that of living organic matter. How old is the artifact?
Hint: The half-life of carbon-14 is 5730 years.

Solution:

5. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{3}}{1+x^{2}}
$$

Solution:

Solution (continued) :
6. (25 points) Show that the tangent line to the curve

$$
y=\int_{-3 x}^{x^{2}} t e^{t^{2}} d t
$$

at $x=3$, does not contain $(0,0)$.
Solution:
7. (25 points) Find the area of the largest rectangle that can be inscribed in an equilateral triangle with sides of length 2 if one side of the rectangle lies on the base of the triangle.

Solution:

8. Two cars are travelling directly towards each other on a straight road. The first car is travelling at 3 metres per second. The second car is travelling at 6 metres per second. When they are 6 metres apart they simultaneously apply the brakes. The first car decelerates at a constant rate of 2 metres per second per second. The second car decelerates at a constant rate of 4 metres per second per second.
(a) (15 points) How long after applying the brakes will the cars collide? Carefully justify your answer.

Solution:

(b) (5 points) How far will be second car travel between applying the brakes and colliding with the first car?
Solution:
9. (25 points) Calculate the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n+2 i}{n^{2}+i n}
$$

Solution:
10. (25 points) Calculate the volume of a pyramid with a square 2 by 2 base and height 1 . Solution:

