MATH 1A FINAL (PRACTICE 2) PROFESSOR PAULIN

\qquad

Student ID: \qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following. You do not need to simplify your answers.
(a) (10 points)

$$
\frac{d}{d x} \frac{\tan \left(\sin \left(e^{x}\right)\right)}{x}
$$

Solution:

$$
\frac{d}{d x} \frac{\tan \left(\sin \left(e^{x}\right)\right)}{x}=\frac{\sec ^{2}\left(\sin \left(e^{x}\right)\right) \cdot \cos \left(e^{x}\right) \cdot e^{x} \cdot x-\tan \left(\sin \left(e^{x}\right)\right)}{x^{2}}
$$

(b) (15 points)

$$
\frac{d}{d x} \cos (x)^{\sin (\sqrt{x})}
$$

Solution:

$$
\begin{aligned}
& f(x)=\cos (x)^{\sin (\sqrt{x})} \Rightarrow \ln (f(x))=\sin (\sqrt{x}) \ln (\cos (x)) \\
& \Rightarrow \frac{d}{d x} \ln (f(x))=\cos (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \ln (\cos (x))+\sin (\sqrt{x}) \frac{-\sin (x)}{\cos (x)} \\
& \Rightarrow \frac{d}{d x} \cos (x)^{\sin (\sqrt{x})}= \\
& \cos (x)^{\sin (\sqrt{x})}\left(\cos (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \ln (\cos (x))+\sin (\sqrt{x}) \frac{-\sin (x)}{\cos (x)}\right)
\end{aligned}
$$

2. Calculate the following (you do not need to use the (ϵ, δ)-definition):
(a) (10 points)

$$
\lim _{x \rightarrow 0} \frac{\cos \left(2 x^{2}\right)-1}{4 x}
$$

Solution:
L'fto spital

(b) (15 points)

$$
\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}
$$

Solution:

$$
\begin{aligned}
& \text { Recall : } \lim _{z \rightarrow \infty}\left(1+\frac{1}{z}\right)^{z}=e \\
& \Rightarrow \lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(\left(1+\frac{1}{\left(\frac{x}{4}\right)}\right)^{\frac{x}{4}}\right)^{4} \\
& =\left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{\left(\frac{x}{4}\right)}\right)^{\frac{x}{4}}\right)^{4}=e^{4}
\end{aligned}
$$

3. Calculate the following (you do not need to use the Riemann sum definition):
(a) (10 points)

$$
\int \frac{\arccos (x)}{\sqrt{1-x^{2}}} d x
$$

Solution:

$$
\begin{aligned}
u=\arccos (x) \Rightarrow \frac{d u}{d x} & =\frac{-1}{\sqrt{1-x^{2}}} \Rightarrow d x=-\sqrt{1-x^{2}} d u \\
\Rightarrow \int \frac{\arccos (x)}{\sqrt{1-x^{2}}} d x & =\int-u d u=-\frac{1}{2} u^{2}+C \\
& =-\frac{1}{2}(\arccos (x))^{2}+C
\end{aligned}
$$

(b) (10 points)

$$
\int_{1 / \pi}^{2 / \pi} \frac{\sin (1 / x)}{3 x^{2}} d x
$$

Solution:

$$
\begin{aligned}
& u=\frac{1}{x} \Rightarrow \frac{d u}{d x}=\frac{-1}{x^{2}} \Rightarrow d x=-x^{2} d x \\
& \Rightarrow \int \frac{\sin (1 / x)}{3 x^{2}} d x=\frac{-1}{3} \int \sin (u) d u=\frac{1}{3} \cos (u)+C \\
&
\end{aligned} \begin{aligned}
& =\frac{1}{3} \cos (1 / x)+C
\end{aligned}
$$

$$
\Rightarrow \int_{1 / \pi}^{2 / \pi} \frac{\sin (1 / x)}{3 x^{2}} d x=\frac{1}{3} \cos \left(\frac{\pi}{2}\right)-\frac{1}{3} \cos (\pi)=\frac{1}{3}
$$

4. (25 points) Calculate the equation of the tangent line at $x=3$ of the following curve:

$$
\frac{2 y^{3}(x-3)}{x \sqrt{y}}+1=\frac{\mathbf{3}}{x \sqrt{y}}
$$

Solution:

$$
\begin{aligned}
& \frac{2 y^{3}(x-3)}{x \sqrt{y}}+1=\frac{1}{x-\sqrt{y}} \Rightarrow 2 y^{3}(x-3)+x \sqrt{y}=1 \\
& \frac{d}{d x}\left(2 y^{3}(x-3)+x \sqrt{y}\right)=\frac{d}{d x}(3) \\
& \Rightarrow 6 y^{2} \frac{d y}{d x}(x-3)+2 y^{3}+\sqrt{y}+x \frac{1}{2} y^{-\frac{1}{2}} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-\sqrt{y}-2 y^{3}}{6 y^{2}(x-3)+x \frac{1}{2} y^{-\frac{1}{2}}} \\
& x=3 \Rightarrow \frac{3 \sqrt{y}=3 \Rightarrow y=1}{\Rightarrow \frac{d y}{d x}=\frac{-1-2}{3 \cdot \frac{1}{2}}=\frac{-3}{(3 / 2)}=-2} \\
& \Rightarrow \text { Eqnatix of Taypt : } y-1=-2(x-3) \\
& \text { ot (3,1) }
\end{aligned}
$$

5. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\ln \left(\frac{x}{2 x^{2}-x^{3}}\right)
$$

Solution:

$$
y= \begin{cases}-\ln \left(2 x-x^{2}\right) & \text { if } x \neq 0 \\ \text { ONE } & \text { it } x=0\end{cases}
$$

Not defined at O
\Rightarrow should sketch $y=f(x)=-\ln \left(2 x-x^{2}\right)$
Domain $2 x-x^{2}=x(2-x)>0 \Leftrightarrow 0<x<2$
Odd/Even: Neither
Vertical asymptotes : $\lim _{x \rightarrow 2^{-}}-\ln \left(2 x-x^{2}\right)=\infty=\lim _{x \rightarrow 0^{+}}-\ln \left(2 x-x^{2}\right)$
$\Rightarrow x=0$ anal $x=2$ vectied asymptotes

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x-2}{2 x-x^{2}} \\
& \text { A/ } f^{\prime}(x)=0 \Leftrightarrow x=1
\end{aligned}
$$

B/ Nous in $(0,2)$
fats at $1 \Rightarrow$ local min

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{2\left(2 x-x^{2}\right)+(2 x-2)(2 x-2)}{\left(2 x-x^{2}\right)^{2}}=\frac{2\left((x-1)^{2}+1\right)}{\left(2 x-x^{2}\right)^{2}}>0 \\
& \text { A/Noue }+f^{\prime \prime}(x)
\end{aligned}
$$

B/ Nous

Solution (continued) :

$$
f(1)=0
$$

PLEASE TURN OVER
6. (25 points) Show that the following equation has at least one real solution. Be sure to carefully justify you answer clearly stating any results you use from lectures.

$$
x \arctan |x|+c=0, \text { where } c \text { is a constant. }
$$

Hint: Consider behavior at ∞.
Solution:
Let $f(x)=x$ arctan $|x|+c$
$\lim _{x \rightarrow \infty} x= \pm \infty$
$x \rightarrow \pm \infty$
$\lim _{x \rightarrow \pm \infty} \arctan (x)=\frac{\pi}{2}>0$
$\Rightarrow \lim _{x \rightarrow-} x \arctan (x)+c=\infty$
Lime $x \arctan |x|+c=-\infty$
$x \rightarrow-\infty \quad 2$
\Rightarrow There exists a, b such that $f(a)<0<f(b)$
$7(x)$ ats on $[a, b] \Rightarrow$ There exists c such that $f(c)=0$
7. (25 points) A drink will be packaged in a cylindrical can with volume $40 \mathrm{in}^{3}$. The top and bottom of the can cost 4 cents per square inch. The sides cost 3 cents per square inch. Determine the dimensions of the can that minimize the cost.
Solution:
Objective : Minimize cots

cost at sides

Objective: $\quad 4 \pi r^{2}+4 \pi r^{2}+3 \cdot 2 \pi r h$
Constraint : $\pi r^{2} h=40$

$$
\Rightarrow \quad h=\frac{40}{\pi r^{2}}
$$

$$
\begin{aligned}
\Rightarrow 8 \pi r^{2}+6 \pi r h & =8 \pi r^{2}+6 \pi r \cdot \frac{40}{\pi r^{2}} \\
& =8 \pi r^{2}+\frac{240}{r}=f(r)
\end{aligned}
$$

Domain : $(0, \infty)$

$$
f^{\prime}(r)=16 \pi r-\frac{240}{r}
$$

4/ $f^{\prime}(r)=0 \Rightarrow 16 \pi r=\frac{240}{r^{2}} \Rightarrow r^{3}=\pi \Rightarrow r=\sqrt[3]{\frac{15}{\pi}}$
B/ 7^{\prime} continues on $(0, \infty)$

\Rightarrow Absolute min cost is when $r=\sqrt[3]{\frac{15}{\pi}}, h=\frac{40}{\pi\left(\frac{15}{\pi}\right)^{\frac{2}{3}}}$
8. Two rockets are fired vertically into the air from the ground. The second rocket is launched four seconds after the first. The velocity of the first rocket is $v_{1}(t)=6-t$ metres per second and the velocity of the second is $v_{2}(t)=10-t$ metres per second, where t is the time in seconds after the first launch.
(a) (15 points) How long after first the launch will both rockets be at the same height? What will this height be?
Solution:

$$
\begin{aligned}
& s_{1}(t)=6 t-\frac{1}{2} t^{2}+C \text { and } s_{1}(0)=0 \Rightarrow c=0 \\
& \Rightarrow s_{1}(t)=6 t-\frac{1}{2} t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& s_{2}(t)=10 t-\frac{1}{2} t^{2}+C \text { and } s_{2}(4)=0 \Rightarrow 40-8+C=0 \\
& \Rightarrow C=-32 \Rightarrow s_{2}(t)=10 t-\frac{1}{2} t^{2}-32
\end{aligned}
$$

$$
S_{1}(t)=S_{2}(t) \Rightarrow 6 t-\frac{1}{2} t^{2}=10 t-\frac{1}{2} t^{2}-32
$$

$\Rightarrow 4 t=32 \Rightarrow t=8$. C time after cst land they'll be same height
$S_{1}(8)=S_{2}(8)=16 \longleftarrow$ height at $t=8$
(b) (10 points) Determine the total distance traveled by the first rocket at this time. Solution:

Total Distance brawled

$$
\begin{aligned}
& =\operatorname{Aran}(彡)+\operatorname{Aran} \Leftrightarrow \\
& =\frac{6 \times 6}{2}+\frac{2 \times 2}{2}=18+2=20 \mathrm{~m} .
\end{aligned}
$$

9. (25 points) Calculate the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+3 i^{2}}
$$

Hint: Remember that $\frac{A}{B}=\frac{1}{B / A}$.
Solution:

$$
\frac{n}{n^{2}+3 i^{2}}=\frac{1}{\frac{n^{2}+3 i^{2}}{n^{2}}} \cdot \frac{1}{n}=\frac{1}{1+3\left(\frac{i}{n}\right)^{2}} \cdot \frac{1}{n}
$$

Letting $a=0, b=1, f(x)=\frac{1}{1+3 x^{2}}$ we gat

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+3 i^{2}}=\int_{0}^{1} \frac{1}{1+3 x^{2}} d x
$$

Let $u=\sqrt{3} x \Rightarrow \frac{d u}{d x}=\sqrt{3} \Rightarrow d x=\frac{1}{\sqrt{3}} d u$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{1+3 x^{2}} d x=\frac{1}{\sqrt{3}} \int \frac{1}{1+u^{2}} d u & =\frac{1}{\sqrt{3}} \arctan (u)+c \\
& =\frac{1}{\sqrt{3}} \arctan (\sqrt{3} x)+c
\end{aligned}
$$

\Rightarrow

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+3 i^{2}}=\frac{1}{\sqrt{3}} \arctan (\sqrt{3})=\frac{\pi}{\sqrt{3} \cdot 3}
$$

10. (25 points) Calculate the volume of the solid of revolution formed by rotating the region enclosed by $x=y^{2}($ with $y \geq 0), x=-y$ and $x=y+2$ around the line $y=2$.
Solution:

$$
\begin{aligned}
& \Rightarrow \text { Volume }=\pi \int_{0}^{4}(-x-2)^{2}-(\sqrt{x}-2)^{2} d x \\
& +\pi \int_{1}^{1}(x-4)^{2}-(\sqrt{x}-2)^{2} d x \\
& =\pi \int_{0}^{1}(-x-2)^{2} d x+\pi \int_{0}^{4}(x-4)^{2} d x-\pi \int_{0}^{4} x-4 \sqrt{x}+4 d x \\
& =\left.\frac{\pi}{3}(x+2)^{3}\right|_{0} ^{1}+\left.\frac{\pi}{3}(x-4)^{3}\right|_{1} ^{4}-\left.\pi\left(\frac{1}{2} x^{2}-\frac{8}{3} x^{3 / 2}+4 x\right)\right|_{0} ^{4} \\
& =\left(9 \pi-\frac{8 \pi}{3}\right)+\left(0-(-9 \pi)-8 \pi+\frac{64}{3} \pi-16 \pi\right. \\
& =\frac{38}{3} \pi
\end{aligned}
$$

