MATH 1A FINAL (PRACTICE 1) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

Student ID: \qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following (you do not need to use the limit definition):
(a) (10 points)

$$
\frac{d}{d x} \ln (3 x) e^{2 x}
$$

Solution:

$$
\frac{d}{d x} \ln (3 x) e^{2 x}=\frac{3}{3 x} e^{2 x}+\ln (3 x) \cdot 2 e^{2 x}
$$

(b) (15 points)

$$
\frac{d}{d x} \tan \left(e^{\left(x^{x}\right)}\right)
$$

Solution:

$$
\begin{aligned}
& f(x)=x^{x} \Rightarrow \ln (f(x))=x \ln (x) \Rightarrow \frac{d}{d x} \ln (f(x))=\ln (x)+1 \\
& \Rightarrow f^{\prime}(x)=x^{x}(\ln (x)+1) \\
& \Rightarrow \frac{d}{d x} \tan \left(e^{\left(x^{x}\right)}\right)=\sec ^{2}\left(e^{\left(x^{x}\right)}\right) \cdot e^{\left(x^{x}\right)} \cdot x^{x}(\ln (x)+1)
\end{aligned}
$$

2. Calculate the following (you do not need to use the (ϵ, δ)-definition):
(a) (10 points)

$$
\text { C'Hospital } \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\tan x}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\tan (x)} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(b) (15 points)

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{6}}}{2+x^{3}}
$$

$$
\begin{aligned}
& =\frac{-\sqrt{4}}{1}=-2
\end{aligned}
$$

3. Calculate the following (you do not need to use Riemann sum defintion):
(a) (10 points)

$$
\int \frac{2 x+4}{x^{2}+1} d x
$$

Solution:

$$
\begin{aligned}
& \int \frac{2 x+4}{x^{2}+1} d x=\int \frac{2 x}{x^{2}+1} d x+\int \frac{4}{x^{2}+1} d x \\
& u=x^{2}+1 \Rightarrow \frac{d u}{d x}=2 x \Rightarrow d x=\frac{d u}{2 x}=\int \frac{2 x}{x^{2}+1} d x=\int \frac{1}{u} d u \\
& =\operatorname{In}|u|+C=\ln \left|x^{2}+1\right|+C \\
& \Rightarrow \int \frac{2 x+4}{x^{2}+1} d x=\ln \left|x^{2}+1\right|+4 \arctan (x)+C \\
& \text { (b) (15 points) } \\
& \int_{e}^{e^{2}} \frac{1}{x \ln (x)} d x
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& u=\operatorname{lu}(x) \Rightarrow \frac{d u}{d x}=\frac{1}{x} \Rightarrow d x=x d u \\
& \Rightarrow \int \frac{1}{x \ln (x)} d x=\int \frac{1}{u} d u=\operatorname{lu}|u|+C \\
& =\ln |\ln (x)|+C \\
& \Rightarrow \int_{e}^{e^{2}} \frac{1}{x \ln (x)} d x=\ln (2)-\operatorname{tu}(1)=\operatorname{tu}(2)
\end{aligned}
$$

4. (25 points) A cup of water is placed in a refrigerator. The refrigerator has temperature 5 C . After 10 minutes the water is 15 C . After 20 minutes the water is 10 C . Determine the temperature of the water when it was placed in the refrigerator.
Solution:

$$
\begin{aligned}
& N \subset C \Rightarrow T(t)=T_{s}+\left(T_{0}-T_{s}\right) e^{t t} \\
& T(10)=15 \Rightarrow 15=5+\left(T_{0}-5\right) e^{10 k} \\
& T\left(201=10 \Rightarrow 10=5+\left(T_{0}-5\right) e^{20 k}\right. \\
& \Rightarrow \frac{10}{T_{0}-5}=e^{10 k} \text { and } \frac{5}{T_{0}-s}=e^{20 k} \\
& \Rightarrow \frac{10^{2}}{\left(T_{0}-s\right)^{2}}=\frac{s}{\left(T_{0}-s\right)} \Rightarrow 20=T_{0}-s \\
& \Rightarrow T_{0}=25^{\circ} c
\end{aligned}
$$

5. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{2} e^{x}}{x}
$$

Solution:

$$
f(x)=\frac{x^{2} e^{x}}{x}=\left\{\begin{array}{lll}
x e^{x} & \text { it } & x \neq 0 \\
\text { one } & \text { it } & x=0
\end{array}\right.
$$

Sketch $y=x e^{x}$ and remove $(0,0)$

Domain : \mathbb{R}
Oad/Even: Neither
Vedical Asymptotes : None

$\Rightarrow y=0$ horizontal asymptote as $x \rightarrow-\infty$
f cts at $-1 \Rightarrow$ local min $f^{\prime}(x)=e^{x}+x e^{x}=(1+x) e^{x}$
4/ $f^{\prime}(x)=0 \Leftrightarrow x=-1$
Bf Nous

Solution (continued) :

$$
f^{\prime \prime}(x)=e^{x}+(1+x) e^{x}=(2+x) e^{x}
$$

7 cts at -2
4. $f^{\prime \prime}(x)=0 \Leftrightarrow x=-2$

B/ Nous
\Rightarrow inflection

$$
\begin{aligned}
& f(-1)=-e^{-1} \\
& f(-2)=-2 e^{-2}
\end{aligned}
$$

6. (25 points) Determine the equation of the tangent line at $x=1$ of the following curve:

$$
y=\int_{x}^{3 x} \cos (\pi t) d t+2 x
$$

Solution:

$$
\begin{aligned}
& y=\int_{0}^{3 x} \cos (\pi t) d t-\int_{0}^{x} \cos (\pi t) d t+2 x \\
& \Rightarrow \frac{d y}{d x}=3 \cos (3 \pi x)-\cos (\pi x)+2 \\
& \left.\Rightarrow \frac{d y}{d x}\right|_{x=1}=3 \cos (3 \pi)-\cos (\pi)+2 \\
& \int_{1}^{3} \cos (\pi t) d t+2=-3-(-1)+2=0 \\
& \Rightarrow \text { Tangent Line has equalises } y=2
\end{aligned}
$$

7. (25 points) An open box will be made by cutting a square from each corner of a 3 by 8 foot piece of cardboard and then folding up the sides. What size squares should be cut from each corner to maximize the volume.
Solution:
Objective: Maximize Volume

$$
\text { Objective: Volume }=y \cdot x \cdot(3-2 x)
$$

3 Constraint: $2 x+y=8$

$$
\Rightarrow y=8-2 x
$$

$$
\begin{aligned}
\Rightarrow \text { Volume }=(8-2 x) x(3-2 x) & =+4 x^{3}-22 x^{2}+24 x \\
& =7(x)
\end{aligned}
$$

Domain : $\left[0, \frac{3}{2}\right]$

$$
\begin{aligned}
f^{\prime}(x)=12 x^{2}-44 x+24 & =3 x^{2}-11 x+6 \\
& =(3 x-2)(x-3)
\end{aligned}
$$

A) $f^{\prime}(x)=0 \Rightarrow x=2 / 3$ w 3

B/ f' contusions encyulure

$f(0)=0 \quad$ Volume is maximized when $f(3 / 2)=0 \quad \Rightarrow \quad x=2 / 3 \quad$ (8 inches)
$f(2 / 3)>0$
8. (25 points) A company accrues debt at a rate of

$$
(2 t+3) \sqrt{t+1}
$$

dollars per year, where t is the time in years since the company started. How much will the company's debt have grown between $t=3$ and $t=8$? You do not need to simplify your answer.
Solution:

$$
\left.\begin{array}{l}
D^{\prime}(t)=(2 t+3) \sqrt{t+1} \\
u=t+1 \Rightarrow \frac{d u}{d t}=1 \Rightarrow d t=d u \\
\Rightarrow t=u-1) \\
\Rightarrow \int(2 t+3) \sqrt{t+1} d t=\int(2 t+3) \sqrt{u} d u \\
=\int(2(u-1)+3) \sqrt{u} d u=\int 2 u^{3 / 2}+u^{1 / 2} d u \\
=2 \cdot \frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C=\frac{4}{5}(t+1)^{5 / 2}+\frac{2}{3}(t+1)^{3 / 3}+c \\
\Rightarrow \int_{3}^{8}(2 t+3) \sqrt{t+1} d t
\end{array}\right) \frac{4}{5}(t+1)^{5 / 2}+\left.\frac{2}{3}(t+1)^{3 / 2}\right|^{8} .
$$

9. (25 points) Calculate the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 n+3 i}{n^{2}} \sin \left(\left(2+\frac{i}{n}\right)^{2}\right)
$$

Solution:

$$
\frac{6 n+3 i}{n^{2}} \sin \left(\left(2+\frac{i}{n}\right)^{2}\right)=3 \cdot\left(2+\frac{i}{n}\right) \sin \left(\left(2+\frac{i}{n}\right)^{2}\right) \cdot \frac{1}{n}
$$

Let $a=2, b=3$ and $f(x)=3 x \sin \left(x^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 n+3 i}{n^{2}} \sin \left(\left(2+\frac{i}{n}\right)^{2}\right)=\int_{2}^{3} 3 x \sin \left(x^{2}\right) d x \\
& n=x^{2} \Rightarrow \frac{d u}{d x}=2 x \Rightarrow d x=\frac{d n}{2 x} \\
& \Rightarrow \int 3 x \sin \left(x^{2}\right) d x=\frac{3}{2} \int \sin (n) d n=\frac{-3}{2} \cos (u)+C \\
&
\end{aligned} \begin{array}{r}
=\frac{-3}{2} \cos \left(x^{2}\right)+C
\end{array}
$$

\Rightarrow

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 n+3 i}{n^{2}} \sin \left(\left(2+\frac{i}{n}\right)^{2}\right) & =\left.\frac{-3}{2} \cos \left(x^{2}\right)\right|_{2} ^{3} \\
& =\frac{3}{2}(\cos (4)-\cos (9))
\end{aligned}
$$

10. Let $f(x)=1 / x$ and $g(x)=4 x h(x)=x$.
(a) (10 points) Calculate the area of the finite region bounded by $y=f(x), y=g(x)$ and $y=h(x)$.
Solution:

$$
\begin{aligned}
& \text { Area }=\int_{0}^{\frac{1}{2}} 4 x-x d x+\int_{1}^{1 / 2} \frac{1}{x}-x d x \\
& =\left.\frac{3}{2} x^{2}\right|_{0} ^{1 / 2}+\ln |x|-\left.\frac{1}{2} x^{2}\right|_{1 / 2} ^{1} \\
& =\frac{3}{8}+\left(\left(-\frac{1}{2}\right)-\left(\ln \left(\frac{1}{2}\right)-\frac{1}{8}\right)\right) \\
& =\ln (2)
\end{aligned}
$$

(b) (15 points) Calculate the volume of the solid of revolution formed by rotating this region around the x-axis.
Solution:

$$
\begin{aligned}
& \text { Volume }=\pi \int_{0}^{1 / 2}(4 x)^{2}-x^{2} d x+\pi \int_{1 / 2}^{1} \frac{1}{x^{2}}-x^{2} d x \\
& =\left.5 \pi x^{3}\right|_{0} ^{1 / 2}+\left.\pi\left(\frac{-1}{x}-\frac{1}{3} x^{3}\right)\right|_{1 / 2} ^{1 / 2} \\
& =\frac{5 \pi}{8}+\pi\left(\left(-1-\frac{1}{3}\right)-\left(-2-\frac{1}{24}\right)\right)
\end{aligned}
$$

