MATH 1A FINAL (PRACTICE 1) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

Student ID: \qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following (you do not need to use the limit definition):
(a) (10 points)

$$
\frac{d}{d x} \ln (3 x) e^{2 x}
$$

Solution:
(b) (15 points)

$$
\frac{d}{d x} \tan \left(e^{\left(x^{x}\right)}\right)
$$

Solution:
2. Calculate the following (you do not need to use the (ϵ, δ)-definition):
(a) (10 points)

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\tan x}
$$

Solution:

(b) (15 points)

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{6}}}{2+x^{3}}
$$

Solution:

3. Calculate the following (you do not need to use Riemann sum defintion):
(a) (10 points)

$$
\int \frac{2 x+4}{x^{2}+1} d x
$$

Solution:

(b) (15 points)

$$
\int_{e}^{e^{2}} \frac{1}{x \ln (x)} d x
$$

Solution:

4. (25 points) A cup of water is placed in a refrigerator. The refrigerator has temperature 5 C . After 10 minutes the water is 15 C . After 20 minutes the water is 10 C . Determine the temperature of the water when it was placed in the refrigerator.

Solution:

5. (25 points) Sketch the following curve. Be sure to indicate asymptotes, local maxima and minima and concavity. Show your working on this page and draw the graph on the next page.

$$
y=\frac{x^{2} e^{x}}{x}
$$

Solution:

Solution (continued) :
6. (25 points) Determine the equation of the tangent line at $x=1$ of the following curve:

$$
y=\int_{x}^{3 x} \cos (\pi t) d t+2 x
$$

Solution:
7. (25 points) An open box will be made by cutting a square from each corner of a 3 by 8 foot piece of cardboard and then folding up the sides. What size squares should be cut from each corner to maximize the volume.

Solution:

8. (25 points) A company accrues debt at a rate of

$$
(2 t+3) \sqrt{t+1}
$$

dollars per year, where t is the time in years since the company started. How much will the company's debt have grown between $t=3$ and $t=8$? You do not need to simplify your answer.

Solution:

9. (25 points) Calculate the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 n+3 i}{n^{2}} \sin \left(\left(2+\frac{i}{n}\right)^{2}\right)
$$

Solution:
10. Let $f(x)=1 / x$ and $g(x)=4 x h(x)=x$.
(a) (10 points) Calculate the area of the finite region bounded by $y=f(x), y=g(x)$ and $y=h(x)$.
Solution:
(b) (15 points) Calculate the volume of the solid of revolution formed by rotating this region around the x-axis.
Solution:

