Exponential Functions

670

n > 0 an integer => $6^{-n} = \frac{1}{b^n} = (\frac{1}{b})^n$

 $b^{\circ} = 1$ m integer => $b^{\frac{m}{n}} = (\sqrt[n]{b})^{m} = \sqrt[n]{b^{m}}$

It x invationed more complicated

Example inational

 $\sqrt{3} = 1.73205...$

We define 2 13 to be the number that the

Following sequence gets doser and doser to:

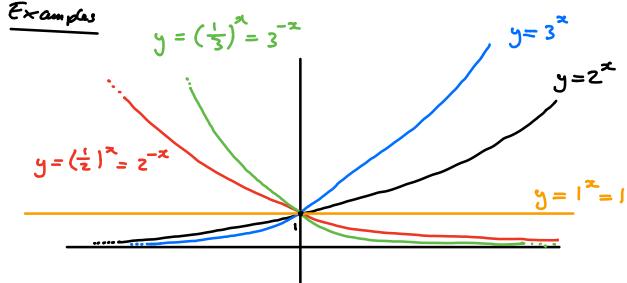
2', 2', 2', 2', 2', ... 21 210 2100 2100

 $2^{-1} = 3.32199...$

Fact: This works for any 6>0 and x in R

$$\Rightarrow$$
 Domain of $H(x) = b^x$ is R

Range of $F(x) = b^x$ is $(0, \infty)$



$$\frac{b>1}{}$$
 => $f(x) = b^x$ in creasing on R

$$\frac{b<1}{}$$
 => $f(x)=b^{2}$ decreasing on R

Laws of Exponents

$$y b^{(24y)} = b^2 \cdot b^3 \quad y b^{(2-y)} = \frac{b^2}{b^3}$$

$$\frac{3}{6}$$
 $\frac{(ay)}{6} = (6^{x})^{\frac{1}{2}}$ $\frac{4}{6}$ $\frac{(ab)^{x}}{6} = a^{x}b^{x} = \frac{4}{6} > 0$

Observation

$$b^{-2} = \left(\frac{1}{b}\right)^{2} \Rightarrow y = \left(\frac{1}{b}\right)^{2} \text{ is reflection of}$$

$$y = b^{2} \text{ is } y = x \text{ is}$$

Practical Examples

1) (Natural Population Growth)

A population with initial size Po tripss in size in any yearly internal.

Mathematical Model:

t = time in years atten population is Po

P(t) = population size at time t

$$P(1) = P_{6-3}$$

$$P(2) = P_0 \cdot 3 \cdot 3 = P_0 \cdot 3^2$$

$$P(3) = P_0 \cdot 3^2 \cdot 3 = P_0 \cdot 3^3$$

More generally: P(t) = Po3t for tim [0, -s)

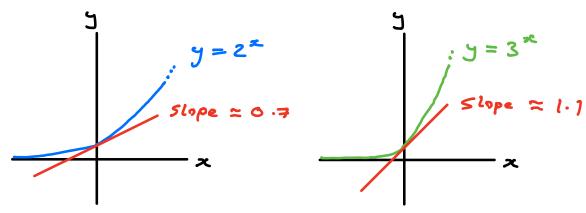
Check:

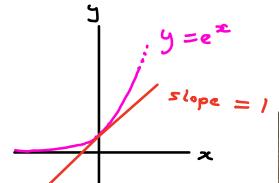
•
$$P(t+1) = P_0 3^{t+1} = P_0 3^{t} \cdot 3 = P(t) \cdot 3$$

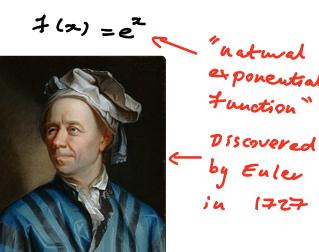
E A radioastive substance with initial mass Mo, loses half its mass in any yearly interval.

time atter mass is No

Observation







Function"

by Euler iu 1727