The Definite Integral

Recall : F - function on [a, b], f(x) >0 for all x in [a, b] =) Area bounded by y = f(n) and $x - n \neq is = Lin \sum_{k \to \infty} f(x_i^*) \Delta x$ between x = a and $k \to \infty$ i = ibetween x = a and x = 6 Riemann Sam $\frac{Picture}{(n=4)} \quad \frac{Area}{(n^{*})} = \frac{1}{n^{*}} \quad y = \frac{1}{n^{*}}$ × 2 × 3 × 4 b Q X 7 X 72 11 X 72 Xo $\Delta x = \frac{b-a}{L}$ Observation : 7(x;") Dx still makes sense it t is not positive on Ca,63. Lin Assume F(x) < O on [a,b]. We have same

$$\stackrel{n}{=} \operatorname{Lin}_{k \to \infty} \sum_{i=1}^{n} f(x_i^{*}) \Delta x = - \begin{pmatrix} \operatorname{Aren}_{bounded}_{by} \\ y = f(x) \text{ and } x - a \times is \\ between \ x = a \ and \\ x = b \end{pmatrix}$$

More generally:

$$\sum_{n=1}^{n} f(x; x) \Delta x = Net \quad \text{tree enclosed by } y = t(x)$$

$$h \gg o \quad i=1$$
and $x - o \times is$ between $x = o$
and $x = b$

Picture

Picture:

1/ Find appropriate \$2
Recall $\Delta x = \frac{b-a}{n}$, hence choose $\Delta x = \frac{3}{n}$
=> b-a= 3 Always by
2 Choose appropriate a and b. tirst
Recall $x_i = a + i \Delta x$ and we can have
n; = x;, hence choose a = -1 and b = 2
\Rightarrow $x_i^{*} = -1 + i \frac{3}{n}$
3 Choose appropriete 7
Need 4 such that
$f(-1+i\frac{3}{n})\frac{3}{n} = (-1+i\frac{3}{n})^{3}\frac{3}{n}$, hence choose
$F(x) = x^3$
$\frac{Conclusion}{m} : \sum_{i=1}^{n} (-1+i\frac{3}{n})^{3} \frac{3}{n} = \int_{-1}^{2} x^{3} dx$
Properties et Définite Integrals
$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad $
$\sum_{n=0}^{\infty} f(x) dx = 0 \qquad \qquad$
$\int_{a} f(x) + g(x) dx = \int_{a} f(x) dx + \int_{a} g(x) dx$

