Areas

Q: How can we find the area of a complicated shape? Basic Examples : Rectangle =) Area = AB : ß A Triangle : =) Height = Bsin O $Area = \frac{1}{2} ABSin B$ How about circle of radius r ? Basic Strategy: Approximate circle using triangles to higher and higher accuracy. Example : $Area = \frac{1}{2}r^2 \sin\left(\frac{2\pi}{6}\right)$ =) Area of circle $\approx \frac{1}{2}r^2 \cdot 6\sin\left(\frac{\pi}{5}\right)$ Approximation using n triangles シ Area of circle = Lim $\frac{1}{2}\Gamma^2 \cdot n \cdot \sin\left(\frac{2\pi}{n}\right)$ $\frac{1}{2}r^{2}\operatorname{Lim}_{n \to \infty} \frac{\sin\left(\frac{2\pi}{n}\right)}{1}$ L'Hospital -> = zr² Lim $\frac{-2\pi}{n^2}\cos\left(\frac{e\pi}{n}\right)$ n-> ~ -1/22 $= \frac{1}{2} r^2 \lim_{k \to \infty} 2\pi \cos\left(\frac{2\pi}{k}\right)$ Awessme / \rightarrow = πr^2

To determine areas of complicated <u>Condusion</u>: Shapes we should approximate using Shapes with known area (e.g. briangles and rectangles) and take a limit.

Strategy: Approximate to higher and higher
accuracy using reatingles.
Step 1
Fix h, a natural number, and divide [a,b]
into h subinterrals at equal length
$$\Delta x = \frac{b-a}{h}$$

 $\frac{\Delta x}{x_0}$

More generally: $x_0 = a$, $x_i = a + i\Delta z$, $x_n = b$ <u>Stop2</u> Choose a random /sample point in each subinterval. <u>Example</u> $a x_i^* x_i^{**} x_2^{**} x_3^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_2^{**} x_3^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_2^{**} x_3^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{**} b$ $x_0^* x_1^{**} x_1^{**} x_1^{**} x_1^{*} x_1^{**} x_1^{**} b$ $x_0^* x_1^{*} x_1^{**} x_1^{**} x_1^{**} x_1^{**} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} x_1^{*} b$ $x_0^* x_1^{*} x_$

Sum the areas of rectangues and take limit as n-> ->

$$\frac{\text{Example } n = 4 \implies}{\text{Sum of Aveas of Rectangles}}$$

$$= 4(x,^*) \triangle x + 4(x_2^*) \triangle x + 4(x_3^*) \triangle x + 4(x_4^*) \triangle x$$

$$= \sum_{i=1}^{4} 7(x_i^*) \triangle x \iff 5igma \text{ notation } Tar \text{ sum}$$

$$i = 1$$

$$a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^{4} a_i \iff i \text{them of sum}$$

$$i = 1 \iff \text{where count}$$

$$i = 1 \iff \text{where count}$$

$$i = 1 \iff \text{where count}$$

More generally:
Avea under
$$g = f(x)$$

between $x = a$ and $= Lim$
 $x = b$
Basically a
pre oile definition of a remain Sum , denoted R_n

 $\Rightarrow R_{4} = F(x_{1}^{*}) \bigtriangleup x + F(x_{2}^{*}) \bigtriangleup x + F(x_{3}^{*}) \bigtriangleup x + f(x_{4}^{*}) \bigtriangleup x$ $= \frac{1}{4} \frac{1}{4} + \frac{z}{4} \cdot \frac{1}{4} + \frac{s}{4} \cdot \frac{1}{4} + \frac{u}{4} \cdot \frac{1}{4}$ $\underbrace{More generally :}_{R_{u}} = \frac{1}{u} \cdot \frac{1}{u} + \frac{z}{u} \cdot \frac{1}{u} + \dots + \frac{u}{u} \cdot \frac{1}{u}$ $= (1 + 2 + 3 + \dots + u) \cdot \frac{1}{u^{2}}$ $\underbrace{Clever \ Observation}_{Gauss \ as \ an \ elementary}_{school \ student \ l}$

 $T \neq S_{n} = 1 + 2 + \dots + n$ =) $2 S_{n} = S_{n} + S_{n} = \frac{1 + 2 + 3 + \dots + n}{n + n + 1 + \dots + 1}$ = $(n + 1) \times n$

=)
$$S_{n} = \frac{n(n+1)}{2}$$

=) $R_{n} = \frac{n(n+1)}{2} \cdot \frac{1}{n^{2}} = \frac{n^{2} + n}{2n^{2}}$

=) Area under
$$y = x$$

between $x = 0$ and $= \lim_{h \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}$
 $x = 1$
Same degree
typ and bottom

Condusion :

It's a beautiful conceptual definition, but we'll need a less direct method to celculate it in general.