MATH 16A MIDTERM 2 (PRACTICE 2) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

Name and section: \qquad

GSI's name:

This exam consists of 5 questions. Answer the questions in the spaces provided.

1. (25 points) Calculate the derivatives of the following functions: (You do not need to use the limit definition and you do not need to simplify your answers)
(a)

$$
\ln \left|x^{2}+3\right|
$$

Solution:

$$
\frac{d}{d x} \ln \left|x^{2}+3\right|=\frac{2 x}{x^{2}+3}
$$

(b)

$$
\frac{e^{\left(x^{3}-x\right)}}{1-x^{3}}
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{e^{\left(x^{3}-x\right)}}{1-x^{3}}\right)=\frac{\frac{d}{d x}\left(e^{\left(x^{3}-x\right)}\right)\left(1-x^{3}\right)-e^{\left(x^{3}-x\right)} \frac{d}{d x}\left(1-x^{3}\right)}{\left(1-x^{3}\right)^{2}} \\
& =\frac{e^{\left(x^{3}-x\right)} \cdot\left(3 x^{2}-1\right) \cdot\left(1-x^{3}\right)-e^{\left(x^{3}-x\right)} \cdot\left(-3 x^{2}\right)}{\left(1-x^{3}\right)^{2}}
\end{aligned}
$$

2. (25 points) A company is making and selling a product. The demand equation for a product is

$$
q=60-3 p
$$

where p is the price per unit and q is the number of units sold. The cost of making q units is $10+q^{3}$.
(a) Determine the marginal profit function.

Solution:

$$
\begin{aligned}
& q=60-3 p \Rightarrow p=20-\frac{q}{3} \\
& \Rightarrow R(q)=p q=\left(20-\frac{9}{3}\right) q=20 q-\frac{q^{2}}{3} \\
& \Rightarrow P(q)=R(q)-C(q)=20 q-\frac{9^{2}}{3}-10-9^{3}
\end{aligned}
$$

$\Rightarrow \frac{d P}{d q}=20-\frac{2}{3} q-3 q^{2}=$ Marginal profit Function
(b) If the company is making and selling 2 units, estimate, using the marginal profit, how much extra the company will profit if they make and sell 3 units.
Solution:

$$
\begin{aligned}
& P^{\prime}(q) \approx P(q+1)-P(q) \\
& \Rightarrow P^{\prime}(2) \approx P(3)-P(2)=\text { extra profit } \\
& P^{\prime}(2)=20-\frac{4}{3}-12=6 \frac{2}{3}
\end{aligned}
$$

\Rightarrow The will roughly be an extra profit at $6 \frac{2}{3}$.
3. Determine on which intervals the following function is concave up or concave down.

$$
f(x)=x^{2}+\frac{1}{x}+2
$$

Be sure to carefully justify your answer. Are there any inflection points?
Solution:

$$
\begin{aligned}
& f(x)=x^{2}+\frac{1}{x}+2 \\
& \Rightarrow f^{\prime}(x)=2 x-\frac{1}{x^{2}} \\
& \Rightarrow f^{\prime \prime}(x)=2+\frac{2}{x^{3}}
\end{aligned}
$$

A/ $7^{\prime \prime}(x)=0 \Rightarrow 2+\frac{2}{x^{3}}=0 \Rightarrow x^{3}=-1 \Rightarrow x=-1$
B/ $y^{\prime \prime}$ undefined $\Rightarrow x=0$

$\Rightarrow 7$ concave us on $(-\infty,-1)$ and $(0, \infty)$
7 concave down on $(-1,0)$
There is on inflection point at $(-1,2)$.
4. A fence is to be built which encloses a rectangular area of $20,000 f t^{2}$. Fencing material costs 2.50 per foot for the north and south sides. Fencing material costs 3.20 per foot for the east and west sides. Find the cost of the least expensive fence.
Solution:
Objective : Minimize Cost.

$$
\text { Objective: cost } \begin{aligned}
& =2 \cdot 5 y+2 \cdot 5 y+3 \cdot 2 x+3.2 x \\
& =5 y+(6.4) x
\end{aligned}
$$

Constraint : $x y=20000 \Rightarrow y=\frac{20000}{x}$

$$
\Rightarrow 5 y+6.4 x=\frac{100000}{x}+6.4 x=f(x)
$$

Domain: $(0, \infty)$

$$
\begin{aligned}
& f^{\prime}(x)=6.4-\frac{100000}{x^{2}} \\
& 4 / f^{\prime}(x)=0 \Rightarrow x^{2}=\frac{100000}{6.4}=\frac{1000000}{64} \Rightarrow x= \pm \frac{1000}{8}
\end{aligned}
$$

B/ f^{\prime} contringons everywhere on $(0, \infty)$

$\Rightarrow I\left(\frac{1000}{8}\right)$ absolute min
\Rightarrow Minimum cost is $\frac{100000}{\left(\frac{1000}{8}\right)}+(6.4) \cdot \frac{1000}{8}=800+800=1600$
5. Find and classify the relative extrema of the following function:

$$
f(x)=\frac{e^{2 x}}{x}
$$

Are the results you get absolute extrema? Be sure to justify your answer.
Solution:

$$
f^{\prime}(x)=\frac{2 e^{2 x} \cdot x-e^{2 x} \cdot 1}{x^{2}}=\underbrace{e^{2 x}}_{>0}\left(\frac{2 x-1}{x^{2}}\right)
$$

A/ $f^{\prime}(x)=0 \Rightarrow 2 x-1=0 \Rightarrow x=\frac{1}{2}$
B/ 7^{\prime} undefined $\Rightarrow x=0$

\Rightarrow The only relative extrema is at $x=\frac{1}{2}$ Where there is a relative min.

The only potential aboglite extrema wold be an absolute min at $\frac{1}{2}$. Note that $f\left(\frac{1}{2}\right)=2 e>0$.
However $f(-1)=-e^{-2}<0<f\left(\frac{1}{2}\right) \Rightarrow f\left(\frac{1}{2}\right)$ not an absolute min.

Solution (continued) :

