MATH 16A FINAL EXAM (PRACTICE 3) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following derivatives (you do not need to use limits):
(a)

$$
\frac{d}{d x}\left(2^{x}-x^{2}\right)
$$

Solution:

$$
\frac{d}{d x}\left(2^{x}-x^{2}\right)=\ln (2) 2^{x}-2 x
$$

(b)

$$
\frac{d}{d u}\left(u^{1 / 3} \ln (u)\right)
$$

Solution:

$$
\frac{d}{d u}\left(u^{1 / 3} \ln (w)=\frac{1}{3} u^{-\frac{2}{3} \ln (u)}+u^{1 / 3} \cdot \frac{1}{u}\right.
$$

(c)

$$
\frac{d^{2}}{d x^{2}}\left(\ln \left(\frac{(x-1) 4^{x}}{x+1}\right)\right)
$$

Solution:

$$
\begin{aligned}
& \ln \left(\frac{(x-1) 4^{x}}{x+1}\right)=\ln (x-1)+\ln (4) x-\ln (x+1) \\
\Rightarrow & \frac{d}{d x}\left(\ln \left(\frac{(x-1) 4^{x}}{x+1}\right)\right)=\frac{1}{x-1}+\ln (4)-\frac{1}{x+1} \\
\Rightarrow & \frac{d^{2}}{d x^{2}}\left(\ln \left(\frac{(x-1) 4^{x}}{x+1}\right)\right)=\frac{-1}{(x-1)^{2}}+\frac{1}{(x+)^{2}}
\end{aligned}
$$

PLEASE TURN OVER
2. Calculate the following integrals:
(a)

$$
\int \sqrt{2 x-1} d x
$$

Solution:

$$
\begin{aligned}
& u=2 x-1 \Rightarrow \frac{d u}{d x}=2 \Rightarrow d x=\frac{d u}{2} \Rightarrow \\
& \int \sqrt{2 x-1} d x=\int \frac{i}{2} \sqrt{u} d u=\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+c=\frac{r}{3}(2 x-1)^{3 / 2}+C \\
& \\
& \int \frac{2^{x}}{2^{x}+1} d x
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& u=2^{x}+1 \Rightarrow \frac{d u}{d x}=\ln (2) 2^{x} \Rightarrow d x=\frac{d n}{\ln (2) 2^{x}} \\
& \Rightarrow \int \frac{2^{x}}{2^{x}+1} d x=\int \frac{1}{\ln (2)} \cdot \frac{1}{n} d u=\frac{1}{\ln (2)} \ln \left(2^{x}+11+C\right.
\end{aligned}
$$

(c)

$$
\int_{1}^{2} \frac{\sqrt[3]{\ln (x)+3}}{x} d x
$$

Solution:

$$
\begin{aligned}
& u=\ln (x)+3 \Rightarrow \frac{d u}{d x}=\frac{1}{x} \Rightarrow d x=x d u \Rightarrow \\
& \int^{3} \frac{\sqrt{\ln (x)+3}}{x} d x=\int u^{1 / 3} d x=\frac{5}{4} u^{4 / 3}+C \\
& =\frac{3}{4}(\ln (x)+3)^{\frac{4}{3}}+C \\
& \Rightarrow \int_{1}^{2} \frac{\sqrt[3]{\ln (x)+3}}{x} d x=\left.\frac{3}{4}(\ln (x)+3)^{\frac{4}{3}}\right|_{1} ^{2}=\frac{3}{4}(\ln (2)+3
\end{aligned}
$$

3. Using the limit definition, calculate the derivative of $f(x)=\frac{1}{\sqrt{x}}$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x} \sqrt{x+h}} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h \sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{-1}{\sqrt{x} \sqrt{x}(\sqrt{x}+\sqrt{x})}=\frac{-1}{2 x^{3 / 2}}
\end{aligned}
$$

4. A product is being sold. The supply equation is given by

$$
p=q^{2}+2 q+1
$$

The demand equation is given by

$$
p=\frac{1000}{q+1}
$$

(a) Calculate the elasticity at the equilibrium.

Solution:

$$
\begin{aligned}
& p=q^{2}+2 q+1=(q+1)^{2} \\
& \text { equilibrium } \\
& \downarrow^{\text {yuan }} \text { elvis. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p=100 \\
& p=\frac{1000}{q+1} \Rightarrow q+1=\frac{1000}{p}-1 \\
& \frac{d q}{d p}=\frac{-1000}{p^{2}} \Rightarrow E=\frac{-p}{q} \cdot \frac{d q}{d p}=\frac{1000}{p q} \\
& \Rightarrow \text { Elasticity at equilibmin }=\frac{1000}{9 \times 100}=\frac{10}{9}
\end{aligned}
$$

(b) Calculate the consumer surplus.

Solution:

$$
\int_{0}^{9} \frac{1000}{q+1} d q=1000 \ln 1 q+\left.11\right|_{0} ^{9}=1000 \ln 10
$$

\Rightarrow Consumer Sumplos $=1000 \ln (10)-900$
5. Find the equation of the tangent line at $(2,1)$ of the following curve:

$$
3\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x} 3\left(x^{2}+y^{2}\right)^{2}=\frac{d}{d x} 25\left(x^{2}-y^{2}\right) \\
= & 6\left(x^{2}+y^{2}\right) \cdot\left(2 x+2 y \frac{d y}{d x}\right)=50 x-50 y \frac{d y}{d x} \\
\Rightarrow & \frac{d y}{d x}=\frac{50 x-12 x\left(x^{2}+y^{2}\right)}{50 y+12 y\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

At $x=2, y=1 \quad \frac{d y}{d x}=\frac{100-120}{50+60}=\frac{2}{11}$
\Rightarrow Tangent $\ln : \quad: \quad(y-1)=\frac{-2}{11}(x-2)$
6. Determine the relative extrema of the following function:

$$
f(x)=x e^{\left(x^{2}-3 x\right)}
$$

Are there any absolute extrema?
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =e^{\left(x^{2}-3 x\right)}+\pi \cdot(2 x-3) e^{\left(x^{2}-3 x\right)} \\
& =\left(1+2 x^{2}-3 x\right) e^{\left(x^{2}-3 x\right)}=(2 x-1)(x-1) e^{\left(x^{2}-3 x\right)}
\end{aligned}
$$

$$
\text { A/ } y^{\prime}(x)=0 \Rightarrow x=1 \text { or } 1 / 2
$$

B/ 71 continios evenguteare

$$
\begin{aligned}
& \Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{2} e^{\left(\frac{1}{4}-\frac{3}{2}\right)}=\frac{1}{2} e^{-\frac{5}{4}} \text { rel. max } \\
& f(1)=e^{-2} \text { val. min } \\
& f(0)=0<e^{-2}=7(1) \Rightarrow \text { No absolute min } \\
& f(10)=10 e^{70}>\frac{1}{2} e^{-\frac{s}{2}} \Rightarrow \text { No absolute marx }
\end{aligned}
$$

7. A drink will be packaged in cylindrical cans with volume 40 in ${ }^{3}$. The top and bottom of the can cost 4 cents per square inch. The sides cost 3 cents per square inch. Determine the dimensions of the can which minimize costs. Solution:

Objective: Minimize costs
cost at
cost d side

Objective: $\quad 4 \pi r^{2}+4 \pi r^{2}+32 \pi r h$
Constant : $\pi r^{2} h=40$

$$
\Rightarrow \quad h=\frac{40}{\pi r^{2}}
$$

$$
\begin{aligned}
\Rightarrow 8 \pi r^{2}+6 \pi r h & =8 \pi r^{2}+6 \pi r \cdot \frac{40}{\pi r^{2}} \\
& =8 \pi r^{2}+\frac{240}{r}=f(r)
\end{aligned}
$$

Domain : $(0, \infty)$

$$
f^{\prime}(r)=16 \pi r-\frac{240}{r}
$$

4/ $f^{\prime}(r)=0 \Rightarrow 16 \pi r=\frac{240}{r^{2}} \Rightarrow r^{3}=\pi \Rightarrow \sqrt[3]{\frac{15}{\pi}}$
B/ 7^{\prime} contrinuous on $(0, \infty)$

\Rightarrow Absolute min cost is wen $r=\sqrt[3]{\frac{15}{\pi}}, h=\frac{40}{\pi\left(\frac{15}{\pi}\right)^{\frac{2}{3}}}$
8. Sketch the following curve. If they exist, be sure to indicate relative extrema and inflecdion points. Show your working on this page and draw the graph on the next page.

$$
y=\frac{3 x}{x-2}=f(x)
$$

Solution:

$$
\begin{aligned}
& \text { Domain }: x \neq 2 \\
& f(0)=0 \Rightarrow(0,0)=x \text { and } y \text { intercept. } \\
& \lim _{x \rightarrow \pm \infty} \frac{3 x}{x-2}=3 \Rightarrow y=3 \text { i horizontal asymptote } \\
& x=2 \text { vertical asymptote } \\
& f^{\prime}(x)=\frac{3(x-2)-3 x}{(x-2)^{2}}=\frac{-6}{(x-2)^{2}}
\end{aligned}
$$

N/ $f^{\prime}(x)=0 \quad$ No solution
B/ f^{\prime} undefined when $x=2$

$$
f^{\prime \prime}(x)=\frac{12}{(x-2)^{3}}
$$

A/ $f^{\prime}(x)=0 \quad$ No solutions
$B / \quad f^{\prime}$ undefined at $x=2$

9. Let $f(x)=x^{5}-2 \ln \left((x+20)^{3}\right)$ and $g(x)=x^{3}-6 \ln (x+20)$. Calculate the area of the region bounded by $y=f(x)$ and $y=g(x)$.
Solution:

$$
\begin{aligned}
& \left.f(x)=g(x) \Rightarrow x^{5}-2 \ln (1 x+20)^{3}\right)=x^{3}-6 \ln (x+20) \\
& \Rightarrow \quad x^{5}=x^{3} \quad\left(2 \ln \left((x+20)^{3}\right)=6 \ln (x+20)\right) \\
& \Rightarrow \quad x^{3}\left(x^{2}-1\right)=0 \quad \Rightarrow \quad x=0,1,-1 \\
& \int^{0} x^{5}-x^{3} d x=\frac{1}{6} x^{6}-\left.\frac{1}{4} x^{4}\right|_{-1} ^{0} \\
& -1 \\
& =0-\left(\frac{1}{6}-\frac{1}{4}\right)=\frac{1}{4}-\frac{1}{6}=\frac{1}{12} \\
& \int_{0}^{1} x^{5}-x^{3} d x=\frac{1}{6} x^{6}-\left.\frac{1}{4} x^{4}\right|_{0} ^{1}=\frac{1}{6}-\frac{1}{4}=\frac{-1}{12} \\
& \Rightarrow \text { Total awe encased }=\frac{1}{12}+\frac{1}{12}=\frac{1}{6} \text {. }
\end{aligned}
$$

10. Two cars are travelling directly towards each other on a straight road. The first car is travelling at 3 metres per second. The second car is travelling at 6 metres per second. When they are 6 metres apart they simultaneously apply the brakes. The first car decelrates at a constant rate of 2 metres per second per second. The second car decelerates at a constant rate of 4 metres per second per second.
(a) (15 points) How long after applying the brakes will the cars collide? Carefully justify your answer. Hint: If t is the time in seconds after they both apply the brakes, first calculate $s_{1}(t)$ and $s_{2}(t)$, position functions for the first and second car respectively.

$$
\begin{aligned}
s_{1}(t)=s_{2}(t) & \Rightarrow-t^{2}+3 t=2 t^{2}-6 t t 6 \\
& \Rightarrow 3 t^{2}-4 t+6=0 \Rightarrow 3(t-1)(t-2)=0
\end{aligned}
$$

$$
\Rightarrow \quad t=1 \text { ar } 2
$$

$1<2 \Rightarrow$ Caus collide when $t=1$
(b) (5 points) Determine the velocity of each car when they collide.

Solution:

$$
\begin{aligned}
& v_{1}(1)=1 \mathrm{~m} / \mathrm{s} \\
& v_{2}(1)=-2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& -2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}^{\prime \prime}(0) \quad S_{2}^{\prime \prime}(0) \\
& \begin{array}{l}
a_{1}(t)=-2 \\
a_{2}(t)=4
\end{array} \Rightarrow \begin{array}{l}
v_{1}(t)=-2 t+3 \\
v_{2}(t)=4 t-6
\end{array} \\
& \Rightarrow S_{1}(t)=-t^{2}+3 t \quad\left(S_{1}(0)=0\right) \\
& s_{2}(t)=2 t^{2}-6 t+6 \quad\left(s_{2}(0)=6\right)
\end{aligned}
$$

