MATH 16A FINAL EXAM (PRACTICE 2) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following derivatives (you do not need to use limits):
(a)

$$
\frac{d}{d x}(x \sqrt{x}+3)
$$

Solution:

$$
\frac{d}{d x}\left(x^{3 / 2}+3\right)=\frac{3}{2} x^{1 / 2}
$$

(b)

$$
\frac{d}{d t}\left(\frac{t^{2}+1}{t^{3}-2}\right)
$$

Solution:

$$
\frac{d}{d t}\left(\frac{t^{2}+1}{t^{3}-2}\right)=\frac{2 t\left(t^{3}-2\right)-\left(t^{2}+1\right)\left(3 t^{2}\right)}{\left(t^{3}-2\right)^{2}}
$$

(c)

$$
\frac{d^{2}}{d x^{2}}\left(3^{\sqrt{x}}\right)
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(3^{\sqrt{x}}\right)=\ln (3) \frac{1}{2} x^{-\frac{1}{2}} 3^{\sqrt{x}} \\
\Rightarrow & \frac{d^{2}}{d x^{2}}\left(3^{\sqrt{x}}\right)=\ln (3) \cdot \frac{-1}{4} x^{-\frac{3}{2}} \cdot 3^{\sqrt{x}}+\left(\ln (3) \frac{1}{2} x^{-\frac{1}{2}}\right)^{2} 5^{\sqrt{x}}
\end{aligned}
$$

2. Calculate the following integrals:
(a)

$$
\int\left(x^{3}-x\right) d x
$$

Solution:

$$
\int x^{3}-x d x=\frac{1}{4} x^{4}-\frac{1}{2} x^{2}+c
$$

(b)

$$
\int \frac{\sqrt{x}-1}{\sqrt{x}} d x
$$

Solution:

$$
\begin{aligned}
\int \frac{\sqrt{x}-1}{\sqrt{x}} d x & =\int 1-x^{-\frac{1}{2}} d x=x-\frac{1}{-\frac{1}{2}+1} x^{-\frac{1}{2}+1}+C \\
& =x-2 \sqrt{x}+C
\end{aligned}
$$

(c)

$$
\int_{1}^{2} \frac{2^{(1 / u)}}{u^{2}} d u
$$

Solution:

$$
\begin{aligned}
& v=1 / u \Rightarrow \frac{d v}{d u}=\frac{-1}{u^{2}} \Rightarrow d u=-u^{2} d v \Rightarrow \\
& \int \frac{2^{(1 / u)}}{u^{2}} d u=\int-2^{v} d v=\frac{-1}{\ln (2)} 2^{v}+c=\frac{-1}{\ln (2)} 2^{(1 / u)}+C \\
& \Rightarrow \int_{1}^{2} \frac{2^{(1 / n)}}{u^{2}} d u=\left.\frac{-1}{\ln (2)} z^{1 / u}\right|_{1} ^{2}=\left(\frac{-1}{\ln (2)} 2^{1 / 2}\right)-\left(\frac{-2}{\ln (2)}\right)
\end{aligned}
$$

3. Using the limit definition, calculate the derivative of $f(x)=\frac{2}{x^{2}}+x$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left(\frac{2}{(x+h)^{2}}+(x+h)\right)-\left(\frac{2}{x^{2}}+x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{(x+h)^{2}}-\frac{2}{x^{2}}+h}{h}+1 \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}-2(x+h)^{2}}{h(x+h)^{2} x^{2}}+1 \\
& =\lim _{h \rightarrow 0}+\frac{-4 x h-h^{2}}{h(x+h)^{2} x^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-4 x^{2}-2 h}{(x+h)^{2} x^{2}}+1 \\
& =\frac{x^{4}}{x^{4}}+1
\end{aligned}
$$

4. A product is being sold. The demand equation is $q^{2}+q p+4 p^{2}=10$, where p is the price per unit and q is the number of units sold.
(a) Calculate the elasticity. Your answer should involve both p and q.

Solution:

$$
\begin{aligned}
& \frac{d}{d p}\left(q^{2}+9 p+4 p^{2}\right)=\frac{d}{d p}(10) \\
\Rightarrow & 2 q \frac{d q}{d p}+\frac{d q}{d p} \cdot p+q+8 p=0 \\
\Rightarrow & \frac{d q}{d p}=\frac{-8 p-q}{2 q+p}
\end{aligned}
$$

$$
\Rightarrow \text { Elasticity }=\frac{-p}{q} \cdot \frac{-8 p-q}{2 q+p}=\frac{8 p^{2}+p q}{2 q^{2}+p q}
$$

(b) If $q=3$ should they increase or decrease the price to raise revenue? Solution:

$$
\begin{aligned}
& q=3 \Rightarrow 3^{2}+3 p+4 p^{2}=10 \Rightarrow 4 p^{2}+3 p-1=0 \\
& \Rightarrow(4 p-1)(p+1)=0 \Rightarrow p=\frac{1}{4} \quad(p>0)
\end{aligned}
$$

$$
8 \cdot\left(\frac{1}{4}\right)^{2}+\frac{3}{4}
$$

$<1 \Rightarrow$ Inelastic so they should

$$
18+\frac{3}{4}
$$ vain e the aria.

5. Determine the concavity of the following function:

$$
f(x)=x^{2}+8 \ln |x+1|
$$

Are there any inflection points? If so, find them.
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=2 x+\frac{8}{x+1} \\
& f^{\prime \prime}(x)=2-\frac{8}{(x+1)^{2}} \\
& \text { A/ } f^{\prime \prime}(x)=0 \Rightarrow(x+1)^{2}=4 \Rightarrow x+1= \pm 2 \Rightarrow x=-3
\end{aligned}
$$

B/ $f^{\prime \prime}$ undefined when $x=-1$

$$
f^{\prime \prime}(-4)>0 \quad f^{\prime \prime}(-2)<0 \quad f^{\prime \prime}(0)<0 \quad f^{\prime \prime}(2)>0
$$

$\Rightarrow y=f(x)$ concave up in $(-\infty,-3)$ and $(1, \infty)$
$y=f(x)$ concave down on $(-3,-1)$ and $(-1,1)$
There are inflection points at $x=-3$ and $x=1$
6. Sketch the following curve. If they exist, be sure to indicate relative extrema and inflecdion points. Show your working on this page and draw the graph on the next page.

$$
y=\frac{1}{x^{2}+4 x+3}
$$

Solution:

$$
f(x)=\frac{1}{x^{2}+4 x+3}=\frac{1}{(x+3)(x+1)}
$$

Domain : $\quad x \neq-3,-1$

$$
f(0)=\frac{1}{3} \Rightarrow\left(0, \frac{1}{3}\right)=y \text {-intercept }
$$

$$
f(x)=0 \quad \text { no solutions } \Rightarrow \text { no } x \text {-intercept }
$$

$\lim _{x \rightarrow \pm \infty} f(x)=0 \Rightarrow y=0 \quad$ horizontal asymptote
$x=-1, x=-3$ vertical asymptotes

$$
f^{\prime}(x)=\frac{-(2 x+4)}{\left(x^{2}+4 x+3\right)^{2}}
$$

A/ $f^{\prime}(x)=0 \Rightarrow x=-2$
B/ f' undefined $\Rightarrow x=-1,-3$
CR.

PLEASE TURN OVER

$$
f(-2)=-1
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{(-2)\left(x^{2}+4 x+3\right)^{2}-(-(2 x+4)) \cdot(2 x+4) \cdot 2 \cdot\left(x^{2}+4 x+3\right)}{\left(x^{2}+4 x+3\right)^{4}} \\
& =\frac{-2\left(x^{2}+4 x+3\right)+2(2 x+4)^{2}}{\left(x^{2}+4 x+3\right)^{3}} \\
& \frac{6 x^{2}+24 x+26}{(x+1)^{3}(x+3)^{3}}
\end{aligned}
$$

4) $f^{\prime \prime}(x)=0 \Rightarrow 6 x^{2}+8 x+26=0<\left(b^{2}-4 a c<0\right)$

B/ $f^{\prime \prime}$ undetined $\Rightarrow x=-1,-3$

7. An open box will be made by cutting a square from each corner of a 3 by 8 foot piece of cardboard and then folding up the sides. What size squares should be cut from each corner to maximize the volume?
Solution:
Objective : Maximize Volume

$$
\text { Objective: Volume }=y \cdot x \cdot(3-2 x)
$$

3 Constrain: $2 x+y=8$

$$
\Rightarrow y=8-2 x
$$

$$
\begin{aligned}
\Rightarrow \text { Volume }=(8-2 x) x(3-2 x) & =+4 x^{3}-22 x^{2}+24 x \\
& =7(x)
\end{aligned}
$$

Domain : $\left[0, \frac{3}{2}\right]$

$$
\begin{aligned}
f^{\prime}(x)=12 x^{2}-44 x+24= & 3 x^{2}-11 x+6 \\
& =(3 x-2)(x-3)
\end{aligned}
$$

A) $f^{\prime}(x)=0 \Rightarrow x=2 / 3$ थ 3

B/ f^{\prime} contimions enceyulure

$f(0)=0 \quad$ Volume is maximized when $f(3 / 2)=0 \quad \Rightarrow \quad x=2 / 3 \quad$ (8 inches)
$f(2 / 3)>0$
8. A company incurs debt at a rate of

$$
(2 t+3) \sqrt{t+1}
$$

dollars per year, where t is the amount of time (in years) since the company started. How much will the company's debts have grown between $t=3$ and $t=8$?
Solution:

$$
\begin{aligned}
& D^{\prime}(t)=(2 t+3) \sqrt{t+1} \\
& u=t+1 \Rightarrow \frac{d u}{d t}=1 \Rightarrow d t=d u \\
& \text { (} \Rightarrow t=u-1 \text {) } \\
& \Rightarrow \quad \int(2 t+3) \sqrt{t+1} d t=\int(2 t+3) \sqrt{u} d u \\
& =\int(2(u-1)+3) \sqrt{u} d u=\int 2 u^{3 / 2}+u^{1 / 2} d u \\
& =2 \cdot \frac{2}{5} u^{s / 2}+\frac{2}{3} u^{3 / 2}+C=\frac{4}{s}(t+1)^{5 / 2}+\frac{2}{3}(t+1)^{3 / 2}+C \\
& \begin{aligned}
\Rightarrow \int_{3}^{8}(2 t+3) \sqrt{t+1} d t & =\frac{4}{5}(t+1)^{5 / 2}+\left.\frac{2}{3}(t+1)^{3 / 2}\right|_{3} ^{8} \\
& =\left(\frac{4}{5} \cdot 3^{5}+\frac{2}{3} 3^{3}\right)-\left(\frac{4}{5} 2^{5}+\frac{2}{3} 2^{3}\right)
\end{aligned} \\
& =D(8)-D(3)
\end{aligned}
$$

9. Determine the area of the region enclosed by the x-axis and the curve

$$
y= \begin{cases}-2-x & \text { if } x<0 \\ x^{2}-2 & \text { if } x \geq 0\end{cases}
$$

between -3 and 2 .
Solution:

$$
\begin{aligned}
& \operatorname{Area}(A)=\int_{-3}^{-2}-2-x d x=-2 x-\left.\frac{1}{2} x^{2}\right|_{-3} ^{-2} \\
& =(4-2)-\left(6-\frac{9}{2}\right) \\
& =\frac{1}{2} \\
& \text { Area }(B)=-\int_{-2}^{0}-2-x d x=2 x+\left.\frac{1}{2} x^{2}\right|_{-2} ^{0} \\
& =0-(-4+2)=2 \\
& \text { Ave (C) }=-\int_{0}^{\sqrt{2}} x^{2}-2 d x=2 x-\left.\frac{1}{3} x^{3}\right|_{0} ^{\sqrt{2}} \\
& =2 \sqrt{2}-\frac{2}{3} \sqrt{2}=\frac{4}{3} \sqrt{2} \\
& \text { Ave (D) }=\int_{\sqrt{2}}^{2} x^{2}-2 d x=\frac{1}{3} x^{3}-\left.2 x\right|_{\sqrt{2}} ^{2}=\left(\frac{8}{3}-4\right) \\
& -\left(\frac{-4}{3} \sqrt{2}\right) \\
& \Rightarrow \text { Total Area }=\frac{1}{2}+2+\frac{4}{3} \sqrt{2}+\frac{4}{3} \sqrt{2}-\frac{4}{3} \text {. }
\end{aligned}
$$

10. Let $f(x)=x^{4}+x^{3}+x^{2}-2 x+1$ and $g(x)=x^{4}+x^{2}-x+1$. Calculate the total area of the region bounded by $y=f(x)$ and $y=g(x)$.
Solution:

$$
\begin{aligned}
& f(x)=g(x) \Rightarrow x^{4}+x^{3}+x^{2}-2 x+1=x^{4}+x^{2}-x+1 \\
& \Rightarrow x^{3}-x=0 \Rightarrow x^{4}\left(x^{2}-1\right) \Rightarrow x=0,1,-1 \\
& \int_{0}^{1} x^{3}-x d x=\frac{1}{4} x^{4}-\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{4}-\frac{1}{2}=\frac{-1}{4} \\
& 0 x^{3}-x d x=\frac{1}{4} x^{4}-\left.\frac{1}{2} x^{2}\right|_{-1} ^{4}=0-\left(\frac{1}{4}-\frac{1}{2}\right)
\end{aligned}
$$

$$
\Rightarrow \text { Total area enclosed is } \frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

