MATH 16A FINAL EXAM (PRACTICE 1) PROFESSOR PAULIN

DO NOT TURN OVER UNTIL
INSTRUCTED TO DO SO.

\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. Calculate the following derivatives (you do not need to use limits):
(a)

$$
\frac{d}{d x}\left(4 x^{3}+7\right)
$$

Solution:

$$
\frac{d}{d x}\left(4 x^{3}+7\right)=12 x^{2}
$$

(b)

$$
\frac{d}{d s}\left(\log _{2}\left(2 s^{3}+2^{s}\right)\right)
$$

Solution:

$$
\frac{d}{d s}\left(\log _{2}\left(2 s^{3}+2^{5}\right)\right)=\frac{6 s^{2}+\ln (2) 2^{5}}{\ln (2) \cdot\left(2 s^{3}+2^{5}\right)}
$$

(c)

$$
\frac{d^{2}}{d x^{2}}\left(e^{(1 / 2 x)}\right)
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{(1 / 2 x)}\right)=\frac{1}{2} \cdot \frac{-1}{x^{2}} e^{(1 / 2 x)} \\
\Rightarrow & \frac{d^{2}}{d x^{2}}\left(e^{(1 / 2 x)}\right)=\frac{1}{x^{3}} e^{c^{1 / 2 x)}}+\frac{1}{4 x^{4}} e^{(1 / 2 x)}
\end{aligned}
$$

2. Calculate the following integrals:
(a)

$$
\int\left(x^{2}+4 \sqrt{x}\right) d x
$$

Solution:

$$
\int x^{2}+4 \sqrt{x} d x=\frac{1}{3} x^{3}+4 \cdot \frac{2}{3} x^{3 / 2}+c
$$

(b)

$$
\int \frac{e^{3 x}+3^{x}}{e^{x}} d x
$$

Solution:

$$
\int \frac{e^{3 x}+3^{x}}{e^{x}} d x=\int e^{2 x}+\left(\frac{3}{e}\right)^{x} d x=\frac{1}{2} e^{2 x}+\frac{1}{\ln \left(\frac{3}{e}\right)}\left(\frac{3}{e}\right)^{x}+c
$$

(c)

$$
\int_{1}^{4} \frac{2^{(\sqrt{x})}}{5 \sqrt{x}} d x
$$

Solution:

$$
\begin{aligned}
& u=\sqrt{x} \Rightarrow \frac{d u}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \Rightarrow d x=2 \sqrt{x} d u \Rightarrow \\
& \int \frac{2^{(\sqrt{x})}}{5 \sqrt{x}} d x=\frac{2}{5 \ln (2)} 2^{u}+C=\frac{2}{5 \ln (2)} 2^{\sqrt{x}}+C \\
& \Rightarrow \int_{1}^{5 \sqrt{x}} \frac{2^{(\sqrt{x})}}{5} d x=\left.\frac{2}{5 \ln (2)} 2^{\sqrt{x}}\right|^{4}=\frac{2}{5 \ln (2)}\left(2^{2}-2^{\prime}\right)
\end{aligned}
$$

3. A product is to be made and sold. Both the cost and the revenue functions are linear. The marginal cost is 3 and the fixed costs are 5 . If two items are made and sold there is a loss of 3 . If six items are made and sold there is a profit of 1 .
(a) Determine the revenue and cost functions.

Solution:

$$
\begin{aligned}
& \text { Solution: } \\
& C(x)=3 x+5 \\
& R(x)=m x+b
\end{aligned}
$$

$$
P(2)=R(2)-C(2)=2 m+b-11=-3 \Rightarrow b=8-2 m
$$

$$
P(6)=R(c)-C(6)=6 m+b-23=1 \Rightarrow b=24-6 m
$$

$$
\Rightarrow 8-2 m=24-6 \mathrm{~m} \Rightarrow 4 m=16 \Rightarrow m=4 \Rightarrow b=0
$$

$$
\Rightarrow R(x)=4 x
$$

(b) Determine the breakeven quantity.

Solution:

$$
C(x)=R(x) \Rightarrow 3 x+5=4 x \Rightarrow x=5 \text { is breakeven }
$$

quantity.
4. Using the limit definition, calculate the derivative of $f(x)=\sqrt{x^{2}+1}$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}+1}-\sqrt{x^{2}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}+1}-\sqrt{x^{2}+1}}{h} \cdot \frac{\sqrt{\left(x+h^{2}+1\right.}+\sqrt{x^{2}+1}}{\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h\left(\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}\right)}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h\left(\sqrt{\left(x+h^{2}+1\right.}+\sqrt{x^{2}+1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{2 x+h}{\left(\sqrt{\left(x+h^{2}+1\right.}+\sqrt{x^{2}+1}\right)}=\frac{2 x}{2 \sqrt{x^{2}+1}}
\end{aligned}
$$

5. Find the equation of the tangent line at $x=3$ of the following curve:

$$
2 y^{3}(x-3)+x \sqrt{y}=3
$$

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(2 y^{3}(x-3)+x \sqrt{y}\right)=\frac{d}{d x} \\
& \Rightarrow 6 y^{2} \frac{d y}{d x}(x-3)+2 y^{3}+\sqrt{y}+x \frac{1}{2} y^{-\frac{1}{2}} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-\sqrt{y}-2 y^{3}}{6 y^{2}(x-3)+x \frac{1}{2} y^{-\frac{1}{2}}} \\
& x=3=\frac{3 \sqrt{y}=3}{3} \Rightarrow \frac{1-2}{d y}=\frac{-3}{(3 / 2)}=-2
\end{aligned}
$$

\Rightarrow Equatia of Tangs $\quad \begin{gathered}\text { at }(3,1)\end{gathered} \quad y-1=-2(x-3)$
6. You open a savings account where interest is compounded continuously. The balance in the account doubles every 10 years.
(a) Determine the annual interest rate (as a percentage). You do not need to simplify your answer.
Solution:

$$
\begin{aligned}
& A(t)=\text { Balance at account at time } t \text { (in yous) } \\
& A(t)=A_{0} e^{r t} \quad\left(A_{0}=\text { initial investment, } r=\text { intensest rate }\right) \\
& A(10)=2 A(0)=2 A_{0} \Rightarrow A_{0} e^{10 r}=2 A_{0} \\
& \Rightarrow e^{10 r}=2 \Rightarrow r=\frac{\ln (2)}{10}
\end{aligned}
$$

\Rightarrow Annual percentage inturAt rate is $\frac{\ln (z)}{10} \times 100=10 \ln (2) \%$
(b) After three years the account balance is $\$ 1000$. Determine the initial investment. You do not need to simplify your answer.
Solution:

$$
\begin{aligned}
& A(3)=1000 \Rightarrow A_{0} e^{3 \cdot \frac{\ln (2)}{10}}=1000 \\
& \Rightarrow A_{0}=\$ \frac{1000}{e^{\frac{3 \ln (2)}{10}}}
\end{aligned}
$$

7. Consider the function $f(x)=4 x+\frac{1}{\sqrt{x}}+1$, where $x>0$.
(a) Determine all relative maxima and minima of this function. Does the function have absolute maxima or minima? Carefully justify your answer.
Solution:

$$
f^{\prime}(x)=4-\frac{1}{2 x^{3 / 2}}
$$

$$
4 / f^{\prime}(x)=0 \Rightarrow x^{3 / 2}=\frac{1}{8} \Rightarrow x=\frac{1}{4}
$$

B/ fl cont anion on $(0, \infty)$

$$
\Rightarrow f\left(\frac{1}{4}\right)=1+2+1=4
$$ relation min.

It is also an absolute min.

There ave no rel/abss maxima.
(b) Determine where the graph $y=f(x)$ is concave up. Does the graph have any inflection points? Carefully justify your answer.
Solution:

$$
f^{\prime \prime}(x)=\frac{3}{4 x^{s / 2}}
$$

A/ $f^{\prime \prime}(x)=0 \quad$ No solution

$$
f^{\prime \prime}(1)>0
$$

B/ $f^{\prime \prime}$ continuous on $(0, \infty)$
$\Rightarrow \quad y=f(x)$ concave up on $(0, \infty)$
True are no inflection points.
8. Determine the minimum possible surface area of a closed box with a square base and volume $1000 \mathrm{~cm}^{3}$
Solution:
Objector: Minimize Surface Area

Objective: $2 x^{2}+4 x y$
Constrouit : $x^{2} y=1000$

$$
\Rightarrow y=\frac{1000}{x^{2}}
$$

$$
\Rightarrow 2 x^{2}+4 x \cdot \frac{1000}{x^{2}}=2 x^{2}+\frac{4000}{x}=f(x)
$$

Domain : $(0, \infty)$

$$
f^{\prime}(x)=4 x-\frac{4000}{x^{2}}
$$

A/ $f^{\prime}(x)=0 \Rightarrow x^{3}=1000 \Rightarrow x=10$
B/ f^{\prime} conterminous en $(0, \infty)$

$\Rightarrow f(10)=600$ is minimise scriface area.
9. Two rockets are fired vertically into the air from the ground. The second rocket is launched four seconds after the first. The velocity of the first rocket is $v_{1}(t)=6-t$ metres per second and the velocity of the second is $v_{2}(t)=10-t$ metres per second, where t is the time in seconds after the first launch.
(a) (15 points) How long after the launch will both rockets be at the same height? What will this height be?
Solution:

$$
\begin{aligned}
& s_{1}(t)=6 t-\frac{1}{2} t^{2}+C \text { and } s_{1}(0)=0 \Rightarrow C=0 \\
& \Rightarrow s_{1}(t)=6 t-\frac{1}{2} t^{2}
\end{aligned}
$$

$$
s_{2}(t)=10 t-\frac{1}{2} t^{2}+C \text { and } s_{2}(4)=0 \Rightarrow 40-8+C=0
$$

$$
\Rightarrow c=-32 \Rightarrow s_{2}(t)=10 t-\frac{1}{2} t^{2}-32
$$

$$
S_{1}(t)=S_{2}(t) \Rightarrow 6 t-\frac{1}{2} t^{2}=10 t-\frac{1}{2} t^{2}-32
$$

$\Rightarrow 4 t=32 \Rightarrow t=8$. \leftarrow time after list launch they'll be same height
$S_{1}(8)=S_{2}(8)=16$ height at $t=8$
(b) (10 points) Determine the total distance traveled by the first rocket at this time. Solution:

Total Distance troweled

$$
\begin{aligned}
& =\text { Area (le) + Area (A) } \\
& =\frac{6 \times 6}{2}+\frac{2 \times 2}{2}=18+2=20 \mathrm{~m}
\end{aligned}
$$

10. Let $f(x)=2 e^{3 x}$ and $g(x)=e^{3 x}+e^{6}$. Calculate the area of the region bounded by $y=f(x)$ and $y=g(x)$ between 0 and 3 .
Solution:

$$
\begin{aligned}
& f(x)=g(x) \Rightarrow 2 e^{3 x}=e^{3 x}+e^{6} \Rightarrow e^{3 x}=e^{6} \\
& \Rightarrow 3 x=6 \Rightarrow x=2 \\
& \int_{0}^{2} 2 e^{3 x}-\left(e^{3 x}+e^{6}\right) d x=\int_{0}^{2} e^{3 x}-e^{6} d x=\frac{1}{3} e^{3 x}-\left.e^{6} x\right|_{0} ^{2} \\
& =\left(\frac{1}{3} e^{6}-2 e^{6}\right)-\frac{1}{3}=\frac{-5}{3} e^{6}-\frac{1}{3}<0 \\
& \begin{array}{r}
\int_{2}^{3} e^{3 x}-e^{6} d x=\frac{1}{3} e^{3 x}-\left.e^{6} x\right|_{2} ^{3}=\left(\frac{1}{3} e^{4}-3 e^{6}\right) \\
\\
-\left(\frac{1}{3} e^{6}-2 e^{6}\right)
\end{array} \\
& =\frac{1}{3} e^{9}-3 e^{6}+\frac{5}{3} e^{6} \\
& =\frac{1}{3} e^{9}-\frac{4}{3} e^{6}>0 \\
& \Rightarrow \text { treat endowed }=\frac{1}{3} e^{4}-\frac{4}{3} e^{6}+\frac{5}{3} e^{6}+\frac{1}{3} \\
& =\frac{1}{3}\left(e^{9}+e^{6}+1\right)
\end{aligned}
$$

