MATH 113 MIDTERM EXAM PROFESSOR PAULIN

Name: _____

Math 113

Midterm Exam

This exam consists of 7 questions. Answer the questions in the spaces provided.

- 1. (25 points) Let G be a set equipped with a binary operation *.
 - (a) Carefully define what it means for (G, *) to be a group. Solution:

(G, *) is a group if the tollowing properties one satisfied: (/ $\forall x, y, z \in G$, x * (y * z) = (x * y) * z (Associativity) 2/ $\exists e \in G$ such that x * e = e * x = x $\forall x \in G$ (Identity) 3/ Given $x \in G$, $\exists y \in G$ such that x * y = j * z = e (Inverses)

> (b) Let $x \in G$. Prove that there is a unique element $y \in G$ such that x * y = y * x = e. Solution:

 $(et y, y' \in G \quad \text{such that} \quad x + y = y + x = e = x + y' = y' + z$ $\Rightarrow \quad y' = y' + e = y' + (x + y) = (y' + z) + y = e + y = y$

2. (25 points) (a) Let G be a cyclic group such that $gp(\{x\}) = G$ and |G| = n. Prove the following:

$$gp(\{x^a\}) = G \iff HCF(a, n) = 1.$$

You may use any result from lectures as long as it is clearly stated.

Given
$$y \in G$$
 Solution:
 $|gp(y)| = ord(y) = min m \in N \text{ such that } y^{m} = e$
 $y^{k} = e \iff ord(y) | k$
 $(\Rightarrow) gp(\{z^{n}\}) = G \Rightarrow ord(z^{n}) = h \Rightarrow z^{nk} \neq e \forall k \in \{1, ..., n-1\}$
 $\Rightarrow n \neq ak \forall k \in \{1, ..., n-1\} \Rightarrow \#(f(a,k) = 1)$
 (\notin)
 $\#(f(a,k) = 1 \Rightarrow n \neq ak \forall k \in \{1, ..., n-1\} \Rightarrow z^{nk} \neq e \forall k \in \{1, ..., n-1\}$
 $\Rightarrow ord(z^{n}) \geq n \cdot z^{n} \in G \Rightarrow ord(z^{n}) | |G| \Rightarrow ord(z^{n}) | n$
 $\Rightarrow ord(z^{n}) = h \Rightarrow gp(\{z^{n}\}) = G$

(b) Is it possible for a group to have exactly 9 elements of order 4? Carefully justify your answer.
Both order (1, a) 1/3 copying to (4)

$$\frac{N_0}{\operatorname{ord}(x)} = 4 = \operatorname{gp}(\{x\}) = \{e, x, x^2, x^3\} = \operatorname{gp}(\{x\})$$

So each ajolic subgroup contains cractly Z elements of arder 4.
Hence there must be an even number of such terms

- 3. (25 points) Let (G, *) be a group together with an action on a set S
 - (a) Prove that the orbits partition S. You may use any result from lectures are long as it is clearly stated.Solution:

•
$$e(x) = x$$
 $\forall x \in S \implies x \in Orb(x) \implies (\bigcup_{x \in S} Orb(x) = S$
• Assume $Orb(x) \cap Orb(y) \neq g$
 $\Rightarrow \quad \exists \quad g_{1}, g_{2} \in G \quad such \quad that \quad g_{1}(x) = g_{2}(y)$
 $\Rightarrow \quad x = [g_{1}^{-1}g_{2})(x) \quad and \quad y = (g_{2}^{-1}g_{1})(x)$
Let $g \in G$
 $g(x) = (gg_{1}^{-1}g_{2})(y) \implies Orb(x) \subset Orb(y)$
 $g(y) = (gg_{2}^{-1}g_{1})(x) \implies Orb(y) \subset Orb(x)$

(b) State, without proof, the orbit-stabilizer theorem **Solution:**

Let $x \in S$. The map $\mathscr{O}: \frac{G}{Stab}(x) \longrightarrow Orb(x)$ is a $gStab(x) \longrightarrow g(x)$ Well-defined bijedige

(c) Assume now that |G| = 77 and |S| = 6. Prove that the action is trivial. Solution:

4. (25 points) (a) Let G and H be two groups. Define what it means for $\phi: G \to H$ to be a homomorphism.

 $\forall x, y \in G$

> (b) State and prove the first isomorphism theorem for groups. You may use any result from lectures are long as it is clearly stated. Solution:

Let of: G -> H be a homomorphism. Then the map 4: "Keng -> Inch 2 Kend -> d(x)

a well detined isomorphism. 15

Proo4

 $z \ker \phi = y \ker \phi$ $(\Rightarrow) = x^{-1}y \in \operatorname{Ker} \phi \iff \phi(x^{-1}y) = e_{H} \iff (\phi(x^{-1})^{-1}\phi(y) = e_{H}$ $(\Rightarrow) \phi(x) = \phi(y) \implies \forall b = th well defined and injecture.$

I surjection by definction of Ing $\gamma((x \text{Ken} \phi)(y \text{Ken} \phi)) = \gamma(xy \text{Ken} \phi) = \phi(xy) = \phi(x)\phi(y)$ = ~ (x Keng) ~ (y Kengs)

PLEASE TURN OVER

5. (25 points) (a) Let $\sigma \in Sym_n$. Define what it means for $\sigma \in Alt_n$. Is the permutation (123)(345)(5267) contained in Alt_7 ? Solution:

 $T \in AH_n \iff It$ has an even number of even length cycles in its cycle Structure $(123)(345)(5267) = (1267)(345) \notin A1t_7$

(b) Determine the center Z(Sym₅) ⊂ Sym₅. Hint: Consider conjugacy classes.
You may use any result from lectures are long as it is clearly stated.
Solution:

Possible cycle structures:

$$S (1234S) \neq (1324S)$$

$$4, 1 (1234) \neq (1324)$$

$$3, 1, 1 (123) \neq (132)$$

$$3, 2 (123)(4S) \neq (132)(4S)$$

$$7, 7, 1 (12)(34) \neq (13)(4S)$$

$$1, 1, 1, 1 (12) \neq (23)$$

6. (25 points) (a) Let G be a group and $N \subset G$ a subgroup. Define what it means for N to be normal. Is it true that G/N Abelian $\Rightarrow G$ is Abelian? Carefully justify your answer. You may use any result from lectures are long as it is clearly stated. Solution:

(b) Give an example of a group G and a subgroup N ⊂ G such that N is not normal. Carefully justify your answer.
You may use any result from lectures are long as it is clearly stated.
Solution:

 $G = Sym_3$, $N = \{e, (n)\}$

 $N \neq G$ as N is not the union of conjugacy classes. $Conj(12) = \{(12), (23), (13)\}$ 7. (25 points) (a) Let G be a finite group. State, without proof, Sylow's Theorem. Solution:

Let G be a Finite group and p a prime. $p^{n}||G| \Rightarrow \exists a subgroup \ H \subset G \ such that |H| = p^{n}$.

(b) Let p be a prime. Prove the following:
p divides |G| ⇒ There exists an element of order p in G.
Solution:

By Sylow \exists H C G such that |H| = pCet $x \in H$, $x \neq e =$ $\operatorname{Grod}(x) > 1$ and $\operatorname{Ord}(x) | p$ = $\operatorname{ord}(x) = p$.

(c) Again for p prime, is the following statement true?
 pⁿ divides |G| ⇒ There exists an element of order pⁿ in G. Carefully justify your answer.

It is not true. For example $G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ $p^{2} | |G|$, however $ord(x) \leq p \quad \forall x \in G$.

•