MATH 113 MIDTERM EXAM PROFESSOR PAULIN

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO.

CALCULATORS ARE NOT PERMITTED

REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND
COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT
THIS EXAM WILL BE ELECTRONICALLY SCANNED. MAKE SURE YOU WRITE ALL SOLUTIONS IN THE SPACES PROVIDED. YOU MAY WRITE SOLUTIONS ON THE BLANK PAGE AT THE BACK BUT BE SURE TO CLEARLY LABEL THEM
\qquad

This exam consists of 7 questions. Answer the questions in the spaces provided.

1. (25 points) Let G be a set equipped with a binary operation $*$.
(a) Carefully define what it means for $(G, *)$ to be a group.

Solution:
$(G, *)$ is a group it the following properties are satisfied:

1) $\forall x, y, z \in G, x *(y * z)=(x * y) * z \quad$ (Associativity)
$2 \exists e \in G$ such that $x * e=e x x=x \quad \forall x \in G$ (Identity)
3 Given $x \in G, \exists y \in a$ such that $x x y=y * x=e$ (Inverses)
(b) Let $x \in G$. Prove that there is a unique element $y \in G$ such that $x * y=y * x=e$. Solution:

Let $y, y^{\prime} \in G$ such that $\quad x * y=y * x=e=x * y^{\prime}=y^{\prime} * x$

$$
\Rightarrow \quad y^{\prime}=y^{\prime} \times e=y^{\prime} *(x \times y)=\left(y^{\prime} \times x\right)+y=e x y=y
$$

2. (25 points) (a) Let G be a cyclic group such that $g p(\{x\})=G$ and $|G|=n$. Prove the following:

$$
g p\left(\left\{x^{a}\right\}\right)=G \Longleftrightarrow H C F(a, n)=1
$$

You may use any result from lectures as long as it is clearly stated.
Given $y \in G \quad$ Solution:

$$
\begin{aligned}
& |g p(y)|=\operatorname{ord}(y)=\min m \in \mathbb{N} \text { such that } y^{m}=e \\
& y^{k}=e \Leftrightarrow \operatorname{ord}(y) \mid k
\end{aligned}
$$

$$
\Leftrightarrow g p\left(\left\{x^{a}\right\}\right)=G \Rightarrow \operatorname{ord}\left(x^{a}\right)=n \Rightarrow x^{a k} \neq e \quad \forall t \in\{1, \ldots, n-1\}
$$

$$
\Rightarrow \quad n \nmid a k \quad \forall k \in\{1, \ldots, n-1\} \Rightarrow H(\neq(a, n)=1
$$

(\Leftarrow)

$$
\begin{aligned}
& H C F(a, n)=1 \Rightarrow n \nmid a k \quad \forall k \in\{1, \ldots, n-1\} \Rightarrow x^{a k} \neq e \forall k \in\{1, \ldots, n-1\} \\
& \Rightarrow \operatorname{ard}\left(x^{a}\right) \geqslant n \cdot x^{a} \in G \Rightarrow \operatorname{ard}\left(x^{a}\right)| | G\left|\Rightarrow \operatorname{ord}\left(x^{a}\right)\right| u \\
& \left.\Rightarrow \operatorname{ard}\left(x^{a}\right)=u \Rightarrow\left\{x^{a}\right\}\right)=G
\end{aligned}
$$

(b) Is it possible for a group to have exactly 9 elements of order 4? Carefully justify your answer.

Both order 4 as 1,3 coprime to 4
No

$$
\operatorname{ard}(x)=4 \Rightarrow \operatorname{gp}(\{x\})=\left\{e, x, x^{2}, x^{3}\right\}=g p\left(\left\{x^{3}\right\}\right)
$$

So each cydic subgroup contains exact y 2 elements of arden 4 .
Hence those must be an even number of such terms
3. (25 points) Let $(G, *)$ be a group together with an action on a set S
(a) Prove that the orbits partition S. You may use any result from lectures are long as it is clearly stated.
Solution:

- $e(x)=x \quad \forall x \in S \Rightarrow x \in \operatorname{Orb}(x) \Rightarrow \bigcup_{x \in S} \operatorname{Oob}(x)=S$
- Assume $O r b(x) \cap O r b(y) \neq \phi$

$$
\Rightarrow \exists g_{1}, g_{2} \in G \text { such that } g,(x)=g_{2}(y)
$$

$$
\Rightarrow x=\left(g_{1}^{-1} g_{2}\right)(x) \text { and } y=\left(g_{2}^{-1} g_{1}\right)(x)
$$

Let $g \in G$

$$
\left.\begin{array}{l}
g(x)=\left(g g_{1}^{-1} g_{2}\right)(y) \Rightarrow \operatorname{arb}(x) c \operatorname{arb}(y) \\
g(y)=\left(g_{2}^{-1} g_{1}\right)(x) \Rightarrow \operatorname{arb}(y)<\operatorname{crb}(x)
\end{array}\right\} \Rightarrow 0, b(x)=\operatorname{arb}(y)
$$

(b) State, without proof, the orbit-stabilizer theorem

Solution:
Let $x \in S$. The map $\varnothing: G / S t a b(x) \longrightarrow \operatorname{Orb}(x)$ is a

$$
g S \operatorname{tab}(x) \longrightarrow g(x)
$$

well-drtined bijedion
(c) Assume now that $|G|=77$ and $|S|=6$. Prove that the action is trivial.

Solution:
Orbit-stabilizer $\Rightarrow \quad|G|=|S t a b(x)| \cdot|0 r b(x)| \quad \forall x \in s$
$\Rightarrow|\operatorname{Orb}(x)|=1 \quad \forall x \in G \Rightarrow$ Action is trivial
4. (25 points) (a) Let G and H be two groups. Define what it means for $\phi: G \rightarrow H$ to be a homomorphism.
Solution:
$\phi: G \longrightarrow H$ is a homomorphism it $\phi(x * y)=\phi(x) \circ \phi(y)$

$$
\forall x, y \in G
$$

(b) State and prove the first isomorphism theorem for groups. You may use any result from lectures are long as it is clearly stated.
Solution:
Let $\phi: G \rightarrow H$ be a homomouphion. Them the map $\psi: G / \operatorname{ken\phi } \rightarrow \operatorname{Im\phi }$

$$
x \operatorname{Kan\phi } \rightarrow \phi(x)
$$

is a well defined isomorplusin.

Proof

$$
x \operatorname{Ken} \phi=y \operatorname{Ken} \phi \Leftrightarrow x^{-1} y \in \operatorname{Ken} \phi \Leftrightarrow \phi\left(x^{-1} y\right)=e_{H} \Leftrightarrow\left(\phi(x 1)^{-1} \phi(y)=e_{H}\right.
$$

$\Leftrightarrow \phi(x)=\phi(y) \Rightarrow$ it both well defined and iajeotve.
ψ subjective by definction of Ian \varnothing

$$
\begin{aligned}
\psi((x \operatorname{Ken} \phi)(y \operatorname{Ken} \phi)) & =\psi(x y \operatorname{Kan} \phi)=\phi(x y)=\phi(x) \phi(y) \\
& =\psi(x \operatorname{Ken} \phi) \psi(y \operatorname{Kan} \phi)
\end{aligned}
$$

5. (25 points) (a) Let $\sigma \in$ Sym $_{n}$. Define what it means for $\sigma \in A l t_{n}$. Is the permutation (123)(345)(5267) contained in Alt_{7} ?

Solution:
$\sigma \in A H_{n} \Leftrightarrow$ It has an even number et even length cycles is its code structure
one even length cycle

$$
(123)(345)(5267)=(1267)(345) \notin A 1 t_{7}
$$

(b) Determine the center $Z\left(\right.$ Sym $\left._{5}\right) \subset$ Sym $_{5}$. Hint: Consider conjugacy classes.

You may use any result from lectures are long as it is clearly stated.
Solution:

$$
\sigma \in Z(\text { syms }) \Leftrightarrow \operatorname{Conj}(\sigma)=\left\{\tau \sigma \tau^{-1} \mid \tau \in \text { sims }^{\prime}\right\}=\{\sigma\}
$$

$\operatorname{Conj}(\sigma)=$ All permutations ω dh same cycle structure as σ

Possible cycle structivo:

$$
\begin{array}{ll}
5 & (12345) \neq(13245) \\
4,1 & (1234) \neq(1324) \\
3,1,1 & (123) \neq(132) \\
3,2 & (1231(45) \neq(132)(45) \\
2,2,1 & (12)(34) \neq(13)(45) \\
2,1,1,1 & (12) \neq(23) \\
1,1,1,1,1 & e \\
\Rightarrow & Z(\text { Sym })=\{e\}
\end{array}
$$

6. (25 points) (a) Let G be a group and $N \subset G$ a subgroup. Define what it means for N to be normal. Is it true that G / N Abelian $\Rightarrow G$ is Abelian? Carefully justify your answer. You may use any result from lectures are long as it is clearly stated.
Solution:

$$
N \triangleleft G \Leftrightarrow \quad n \in N, g \in G \quad \Rightarrow \quad g n g^{-1} \in N
$$

G / N Abclian $F G$ Abetian
union at Conjugacy cases so normal

For example, $G=$ Sym s $\quad, \quad N=\{e,(123),(132)\}$

However $G=S_{y} \mathrm{Sm}_{3}$ is uon-Abelian
(b) Give an example of a group G and a subgroup $N \subset G$ such that N is not normal. Carefully justify your answer.
You may use any result from lectures are long as it is clearly stated.
Solution:

$$
G=\operatorname{Sym}_{3}, N=\{e,(12)\}
$$

$N \notin G$ as N is not the union of conjingagy classes. Conj $(12)=\{(12),(23),(13)\}$ cycle stonctimin $\{2,1\}$
7. (25 points) (a) Let G be a finite group. State, without proof, Sylow's Theorem. Solution:

Let G be a Finite group and p a prime. $P^{n}| | G \mid \Rightarrow \exists$ a subgroup $H C G$ such that $|H|=P^{n}$.
(b) Let p be a prime. Prove the following: p divides $|G| \Rightarrow$ There exists an element of order p in G. Solution:

By Sylow $\exists H \subset G$ such that $|H|=p$
Let $x \in H, x \neq e \Rightarrow \operatorname{ard}(x)>1$ and $\operatorname{ord}(x) \mid p$

$$
\Rightarrow \quad \operatorname{ord}(x)=p .
$$

(c) Again for p prime, is the following statement true? p^{n} divides $|G| \Rightarrow$ There exists an element of order p^{n} in G. Carefully justify your answer.

It is not true. For example $G=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$

$$
p^{2}| | \epsilon \mid \text {, however } \operatorname{ord}(x) \leqslant p \quad \forall x \in G .
$$

