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Math 113 Midterm Exam

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) Let G be a set equipped with a binary operation ∗.
(a) Carefully define what it means for (G, ∗) to be a group.

Solution:

(b) Let x ∈ G. Prove that there is a unique element y ∈ G such that x ∗ y = y ∗ x = e.

Solution:
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2. (25 points) (a) Let G be a cyclic group such that gp({x}) = G and |G| = n. Prove the
following:

gp({xa}) = G ⇐⇒ HCF (a, n) = 1.

You may use any result from lectures as long as it is clearly stated.

Solution:

(b) Is it possible for a group to have exactly 9 elements of order 4? Carefully justify
your answer.
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Given ye G

gp g I ord y min me IN such that ym e

k
y e ordly k

gp sea G ord xa n Ik te the i n i

uf a k t ke E l u i HCFCa.ir

H CFC a n nXak t k E E l u i soak e f ke i n B

ord sea n xa E G ord xa 11Gt ord na u

and sea u gp Coca G

Both order 4 as 1,3 coprime to 4
Noord

x 4 gpCCx3 Ee x2 gpleas

so each cyclic subgroup contains exactly 2 elements of order 4

tence there must be an even number of such terms



Math 113 Midterm Exam, Page 3 of 8

3. (25 points) Let (G, ∗) be a group together with an action on a set S

(a) Prove that the orbits partition S. You may use any result from lectures are long as
it is clearly stated.

Solution:

(b) State, without proof, the orbit-stabilizer theorem

Solution:

(c) Assume now that |G| = 77 and |S| = 6. Prove that the action is trivial.

Solution:
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4. (25 points) (a) Let G and H be two groups. Define what it means for φ : G → H to
be a homomorphism.

Solution:

(b) State and prove the first isomorphism theorem for groups. You may use any result
from lectures are long as it is clearly stated.

Solution:
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5. (25 points) (a) Let σ ∈ Symn. Define what it means for σ ∈ Altn. Is the permutation
(123)(345)(5267) contained in Alt7?

Solution:

(b) Determine the center Z(Sym5) ⊂ Sym5. Hint: Consider conjugacy classes.

You may use any result from lectures are long as it is clearly stated.

Solution:
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6. (25 points) (a) Let G be a group and N ⊂ G a subgroup. Define what it means for N
to be normal. Is it true that G/N Abelian ⇒ G is Abelian? Carefully justify your
answer. You may use any result from lectures are long as it is clearly stated.

Solution:

(b) Give an example of a group G and a subgroup N ⊂ G such that N is not normal.
Carefully justify your answer.

You may use any result from lectures are long as it is clearly stated.

Solution:
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7. (25 points) (a) Let G be a finite group. State, without proof, Sylow’s Theorem.

Solution:

(b) Let p be a prime. Prove the following:

p divides |G| ⇒ There exists an element of order p in G.

Solution:

(c) Again for p prime, is the following statement true?

pn divides |G| ⇒ There exists an element of order pn in G.

Carefully justify your answer.

END OF EXAM
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